найдем производную. (3*3х²(х²-3)-3х³*(2х))/(3²(х²-3)²)=0, когда 9х⁴-27х²-6х⁴=0
3х⁴-27х²=0, х²*(х-3)(х+3)=0, разобьем критическими точками числовую ось и установим знак производной в каждом из образовавшихся интервалов методом интервалов. знаменатель равен нулю, когда х=±√3
-3-√30√33
+ - - - - +
Значит, точки экстремума: х= -3 - точка максимума, х=3 - точка минимума, а сами экстремумы - это значения функции в точках экстремума, т.к. максимум это у(-3)=-27/(3*(9-6)) =-3
максимум у(3)=27/(3*(9-6)) =3
Поделитесь своими знаниями, ответьте на вопрос:
решите примеры столбиком!! 552:4 846:6 994:7 755:5 984:8 472:4 786:6 882:7 522:3
Там где стрелочки,нужно перенести на одну клеточку, второпях делала