К дробям применимы самые разные арифметические операции.
Приведение дроби к общему знаменателюНапример, необходимо сравнить дроби 3/4 и 4/5.
Чтобы решить задачу, сначала найдем наименьший общий знаменатель, т.е. наименьшее число, которое делится без остатка на каждый из знаменателей дробей
Наименьший общий знаменатель(4,5) = 20
Затем знаменатель обоих дробей приводится к наименьшему общему знаменателю
ответ: 15/20 < 16/20
Сложение и вычитание дробейЕсли необходимо посчитать сумму двух дробей, их сначала приводят к общему знаменателю, затем складывают числители, при этом знаменатель останется без изменений. Разность дробей считается аналогичным образом, различие лишь в том, что числители вычитаются.
Например, необходимо найти сумму дробей 1/2 и 1/3
ответ: 5/6
Теперь найдем разность дробей 1/2 и 1/4
ответ: 1/4
Умножение и деление дробейТут решение дробей несложное, здесь все достаточно просто:
Умножение - числители и знаменатели дробей перемножаются между собой;Деление - сперва получаем дробь, обратную второй дроби, т.е. меняем местами ее числитель и знаменатель, после чего полученные дроби перемножаем.Например:
На этом о том, как решать дроби, всё. Если у вас остались какие то вопросы по решению дробей, что то непонятно, то пишите в комментарии и мы обязательно вам ответим.
Для закрепления материала рекомендуем также посмотреть наше видео:
Поделитесь своими знаниями, ответьте на вопрос:
Знайти значення числа B яке дорівнює 9% від числа 11.
Пошаговое объяснение:
9%=0,09
0,09x=11
x=11: 0,09=1100:9=122 2/9
это число которое 9% равен 11
9% числа 11
11 --- 100%
х --- 9%
х=(9×11).100= 99/ 100=0.99
2. 24 - 0,41×24 = 24- 9,84=14,16