1.
-2х+4х=7
2х=7
х=7/2
2.
х+3х=2
4х=2
х=1/2
3.
-10х-5х=10-1
-15х=9
х=-3/5
4.
2х+2х=-3+5
4х=2
х=1/2
5.
4х+4=-9
4х=-9-4
4х=-13
х=-13/4
6.
2х-12=5
2х=5+12
2х=17
х=17/2
7.
10х=3-30
10х=-27
х=-27/10
Пошаговое объяснение:
а) Да, например, первый набрал второй 70, третий – 10. Средний , не сдавших тест, первоначально был (70+10)/2 = 40, а после добавления по 5 очков каждому участнику стало 105, 75 и 15, тогда средний , не сдавших тест, составил 15, так как 75 достаточно для сдачи теста.
б) В примере предыдущего пункта средний участников теста, сдавших тест, сначала был а после добавления стал (105+75)/2 =
в) Судя по условию, здесь немного другое условие. Ученик считается сдавшим тест, если он набрал
Пусть из N участников сдали тест a участников, после добавления стало b участников, сдавших тест. Заметим, что средний после добавления составил (90N + 5N)/N = 95.
Имеем два уравнения:
{ 90N = 75(N - a) + 100a = 75N - 75a + 100a = 75N + 25a
{ 95N = 79(N - b) + 103b = 79N - 79b + 103b = 79N + 24b
откуда
{ 15N = 25a, то есть 3N = 5a
{ 16N = 24b, то есть 2N = 3b
Таким образом, N кратно 15, потому что делится на 3 и на 5.
Покажем, что минимальное N = 15. Пусть изначально 5 участников набрали по 1 участник — и 9 участников по
Тогда средний был (5*74+80+9*100)/15 = 1350/15 = 90, средний бал сдавших тест, был 100, а средний не сдавших тест, был (5*74+80)/6 = 450/6 = 75.
После добавления стало: 5 участников по 1 участник — и 9 участников по
Теперь средний участников всех участников стал (5*79+85+9*105)/15 = 1425/15 = 95, средний сдавших тест, стал равен (85+9*105)/15 = 1030/10 = 103, средний не сдавших тест, стал равен 79.
Таким образом, все условия выполнены.
а) Да, например, первый набрал второй 70, третий – 10. Средний , не сдавших тест, первоначально был (70+10)/2 = 40, а после добавления по 5 очков каждому участнику стало 105, 75 и 15, тогда средний , не сдавших тест, составил 15, так как 75 достаточно для сдачи теста.
б) В примере предыдущего пункта средний участников теста, сдавших тест, сначала был а после добавления стал (105+75)/2 =
в) Судя по условию, здесь немного другое условие. Ученик считается сдавшим тест, если он набрал
Пусть из N участников сдали тест a участников, после добавления стало b участников, сдавших тест. Заметим, что средний после добавления составил (90N + 5N)/N = 95.
Имеем два уравнения:
{ 90N = 75(N - a) + 100a = 75N - 75a + 100a = 75N + 25a
{ 95N = 79(N - b) + 103b = 79N - 79b + 103b = 79N + 24b
откуда
{ 15N = 25a, то есть 3N = 5a
{ 16N = 24b, то есть 2N = 3b
Таким образом, N кратно 15, потому что делится на 3 и на 5.
Покажем, что минимальное N = 15. Пусть изначально 5 участников набрали по 1 участник — и 9 участников по
Тогда средний был (5*74+80+9*100)/15 = 1350/15 = 90, средний бал сдавших тест, был 100, а средний не сдавших тест, был (5*74+80)/6 = 450/6 = 75.
После добавления стало: 5 участников по 1 участник — и 9 участников по
Теперь средний участников всех участников стал (5*79+85+9*105)/15 = 1425/15 = 95, средний сдавших тест, стал равен (85+9*105)/15 = 1030/10 = 103, средний не сдавших тест, стал равен 79.
Таким образом, все условия выполнены.
Поделитесь своими знаниями, ответьте на вопрос:
1. − 2x−7 = − 4x 2. x−2 = − 3x 3. 1−10x = 5x+10 4. − 5+2x = − 2x−3 5. 4(x+1) = −9 6. 2(x−6) = 5 7. 10(x+3) = 3
1. х=3,5
2. х=0,5
3. х=-0,6
4. х=0,5
5. х=-3,25
6, х=8,5
7. х=-2,7
Пошаговое объяснение: