lulu777
?>

-13, 2:20= 14+(-8, 74)= - 3, 9-2/25=

Математика

Ответы

andreich97

-13,2:20=-0,66

14+(-8,74)=22,74

-3,9-2/25=-199/50

Стяжкин
Рассмотрите такое решение (для чертежа нет возможности):
1. Парабола с функцией g(x) будут пересекаться в точках (-1;1) и (1;1).
2. По условию искомая площадь расположена внутри прямой g=1 и параболы х². Поэтому она будет вычисляться из разности прямоугольника со сторонами 2х1 и площади, которая под параболой в пределах от -1 до +1.
3. Площадь фигуры можно найти из удвоенного интеграла с пределами от 0 до 1 (так как относительно оси ординат парабола х² симметрична, то же относится к прямой g=1), вместо пределов от -1 до +1:
2 \int\limits^1_0 {(1-x^2)}\,dx=2(x- \frac{x^3}{3})|_0^1= \frac{4}{3}
Меладзе_Владимир1695
У = х² - 6х +9 - это парабола
у = 3х -9 - это прямая.
найдём границы интегрирования. Это точки , которые принадлежат обоим графикам.
х² -6х +9 = 3х - 9
х² - 9х +18 = 0
х = 3 и х = 6 ( по т. Виета
Итак, на участке [3;6] расположена фигура, площадь которой надо искать
Прямая у = 3х -9 выше параболы. Значит, площадь фигуры будем искать так: а) ищем интеграл от (3х - 9)dx, потом б) интеграл от (х²  - 6х +9)dx и в) выполним вычитание.
Начали.
а) интеграл от (3х - 9)dx = (3х²/2 - 9х) в пределах от 3 до 6.
считаем: 3·36/2 - 9·6 -(3·9/2-9·3) = 54-54 +27/2 = 13,5
б) интеграл от(х² -6х +9) dx = (х³/3 -6х²/2 +9х) в пределах от 3 до 6.
считаем:получится 9
в) Sфиг = 13,5 - 9 = 4,5
Тема: расчет площадей плоских фигур с определенного интеграла. : найти площадь фигуры ограниченной л

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

-13, 2:20= 14+(-8, 74)= - 3, 9-2/25=
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

mashuska
ИвановичБогословский280
ЕлизаветаВладимирович
ti2107
Леонтьева
skachmin
artmasterstyle
brendacepedam
bruise6
Gennadevna-Darya1216
sergeykvik13
des-32463
kiruha0378
zakupki
nikv568734