Пусть дан квадрат со стороной х см. Так как из условия задачи известно, что квадрат делится без остатка на прямоугольники длиной 13 см и шириной 5 см, то длина стороны квадрата должна быть кратна наименьшему общему кратному чисел 13 и 5, то есть числу НОК(13; 5) = 13 ∙ 5 = 65. Получаем, что х = 65 ∙ n (см), где n∈ N. Чтобы определить наименьшую площадь квадрата, выберем наименьшее натуральное число n = 1, тогда х = 65 см. Площадь квадрата S = х² (см²). Подставим в формулу значение найденной длины стороны квадрата и произведём расчеты:
S = 65² (см²);
S = 4225 (см²).
ответ: наименьшая площадь квадрата составляет 4225 см².
svetlana-sharapova-762621
22.01.2020
Положение центра вписанной окружности определим, узнав высоту трапеции. Тогда r = 4/2 = 2. Окружность, описанная около трапеции, является одновременно и описанной около треугольника, стороны которого - диагональ, боковая сторона и большее основание. Диагональ равна: Радиус описанной окружности равен: Площадь треугольника равна: S = (1/2)*8*4 = 16 кв.ед. Тогда Так как центр описанной окружности лежит на оси симметрии трапеции. то определим его положение: H+Δ = √(R² - 1²) = √( 16.01563-1) = √ 15.01563 = 3.875. Отсюда Δ = 3.875 - 4 = -0,125. Значит, центр этой окружности лежит внутри контура трапеции - на 0,125 выше нижнего основания. ответ: расстояние между центрами вписанной и описанной окружностей равно 2-0,125 = 1,875.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
ДО ТЬ! БУДЬ ЛАСКА Маємо рівносторонній трикутник. Обчисли невідомі величини, якщо BO= 8 м . r — р">
Решение.
Пусть дан квадрат со стороной х см. Так как из условия задачи известно, что квадрат делится без остатка на прямоугольники длиной 13 см и шириной 5 см, то длина стороны квадрата должна быть кратна наименьшему общему кратному чисел 13 и 5, то есть числу НОК(13; 5) = 13 ∙ 5 = 65. Получаем, что х = 65 ∙ n (см), где n∈ N. Чтобы определить наименьшую площадь квадрата, выберем наименьшее натуральное число n = 1, тогда х = 65 см. Площадь квадрата S = х² (см²). Подставим в формулу значение найденной длины стороны квадрата и произведём расчеты:
S = 65² (см²);
S = 4225 (см²).
ответ: наименьшая площадь квадрата составляет 4225 см².