Пошаговое объяснение:
Ромб - параллелограмм у которого все стороны равны .
Теорема : Диагонали ромба пересекаются под прямым углом и лежат на биссектрисах его углов
Доказательство :
Нарисуем ромб АВСД ( рисунок во вложении ) .Рассмотрим ΔАВD . Поскольку у ромба все стороны равны , то АВ=AD , а это значит , что ΔABD - равнобедренный .Поскольку ромб это параллелограмм , значит диагонали в точке пересечения делятся пополам, т.е. ВЕ=ЕD. По-этому можно утверждать , что АЕ - это медиана (отрезок соединяющий вершину с серединой противоположной стороны) , а по свойству равнобедренного треугольника : медиана, проведенная к основанию, является биссектрисой и высотой, а значит АЕ - высота и биссектриса Δ АВD. Следовательно АЕ⊥BD и угол ВАЕ = углу DAE, что говорит о том , что диагонали ромба пересекаются под прямым углом и лежат на биссектрисах его углов.
Поделитесь своими знаниями, ответьте на вопрос:
Площадь прямоугольного треугольника . Один из острых углов 30 градусов. Найдите длину катета, прилежащего к этому углу.
34
Пошаговое объяснение:
S=1/2ab
578 √3/3=1/2b √3/3 * b
Умножим обе части на 2 и разделим обе части на √3/3. Получим уравнение.
b²=1156 ⇒ b=34