У одноклассников Пети может быть 0, 1, 2, ..., 28 друзей – всего 29 вариантов. Но если кто-то дружит со всеми, то у всех не меньше одного друга. Поэтому либо есть такой, кто дружит со всеми, либо есть такой, кто не дружит ни с кем. В обоих случаях остается 28 вариантов: 1, 2, ..., 28 или 0, 1, ..., 27. Обозначим того, у кого больше всего друзей через A, а того, у кого их меньше всего – через B. В первом случае A дружит со всеми, а B – только с одним человеком, то есть только с A. Во втором случае B не дружит ни с кем, а A дружит со всеми, кроме одного, то есть со всеми, кроме B. Итак, в каждом из случаев A дружит с Петей, а B – нет. Переведём A и B в другой класс. Как мы уже видели, A дружит со всеми из оставшихся, а B – ни с кем из оставшихся. Поэтому после перевода у каждого стало на одного друга меньше (среди одноклассников). Значит, у оставшихся Петиных одноклассников снова будет разное число друзей среди одноклассников. Теперь снова переведём самого "дружелюбного" и самого "нелюдимого" в другой класс и т. д. Повторяя эти рассуждения 14 раз, мы переведём в другой класс 14 пар школьников, в каждой из которых ровно один Петин друг. Итак, друзей у Пети 14
Пошаговое объяснение:
rusinfopro
02.10.2021
В ящике лежат шары: 5 красных, 7 синих и 1 зелёный. Сколько шаров надо вынуть, чтобы достать три шара одного цвета? К=5; С=7; З=1; Достать одного цвета 3; Всех шаров 5+7+1=13; Достаём 3 одинаковые из 13 трех цветов;
Сперва смотрим сколько можно вытащить разных без повтора- три все разных цветов, надо взять больше,
зелёный только 1; и ещё три надо одного цвета; считаем 1+3= 4шара; но можем вытянуть 1зел+2кр+1с; значит надо больше шаров;
1зел+3кр+2с= 6шаров; или 1зел+5кр; точно уже есть три одинаковые; если 5 шаров берем, то может быть 1зел+2кр+2син и нет три одинаковых; поэтому надо вытащить 6 шаров.
Вот так можно вытащить 6 шаров; 1з+1к+4с; 1з+2к+3с; 1з+3к+2с; 1з+4к+1с; 5к; 5с; 1з+5к; 1з+5с; 1к+4с; 2к+3с; 3к+2с; 4к+1с; везде точно будет 3 одинаковые или синих или красных.
У одноклассников Пети может быть 0, 1, 2, ..., 28 друзей – всего 29 вариантов. Но если кто-то дружит со всеми, то у всех не меньше одного друга. Поэтому либо есть такой, кто дружит со всеми, либо есть такой, кто не дружит ни с кем. В обоих случаях остается 28 вариантов: 1, 2, ..., 28 или 0, 1, ..., 27. Обозначим того, у кого больше всего друзей через A, а того, у кого их меньше всего – через B. В первом случае A дружит со всеми, а B – только с одним человеком, то есть только с A. Во втором случае B не дружит ни с кем, а A дружит со всеми, кроме одного, то есть со всеми, кроме B. Итак, в каждом из случаев A дружит с Петей, а B – нет. Переведём A и B в другой класс. Как мы уже видели, A дружит со всеми из оставшихся, а B – ни с кем из оставшихся. Поэтому после перевода у каждого стало на одного друга меньше (среди одноклассников). Значит, у оставшихся Петиных одноклассников снова будет разное число друзей среди одноклассников. Теперь снова переведём самого "дружелюбного" и самого "нелюдимого" в другой класс и т. д. Повторяя эти рассуждения 14 раз, мы переведём в другой класс 14 пар школьников, в каждой из которых ровно один Петин друг. Итак, друзей у Пети 14
Пошаговое объяснение: