vorota-grupp
?>

Домашнее задание: 1. Приведите пример натурального числа.большего 10, которое делится на 10 и неделится на 4.2. Приведите пример натурального числа, большего 11, которое делится на 1 и делитсяна 3, 3. Приведите пример натурального числа, большего 12, которое делится на 12 и делитсяна 5.4. Приведите пример натурального числа, большего 8, которое делится на 8 и не делитсяна 3, 5. Приведите пример натурального числа.большего 14, которое делится на 14 и неделится на 3, ​

Математика

Ответы

А Дзукаев1562

1) 30

2) 15

3) 60

4)16

5) 28

bb495
14. y' = 3x^2 - 6(a + 2)x + 3 = 3(x^2 - 2(a + 2)x + 1) должно быть больше нуля для всех, это выполнится, если дискриминант трехчлена, стоящего в скобах, будет меньше нуля.
D/4 = (a + 2)^2 - 1 < 0
-1 < a + 2 < 1
-3 < a < -1
Сумма = -2

15. Т.к. корень - величина неотрицательная, решение - все точки, для которых 2 - x - x^2 > 0 (тогда корень существует и не равен нулю) и x + 5 > 0.
Для всех точек решения первого неравенства (-2, 1) второе неравенство выполняется.
ответ. (-2, 1)

23. Количество нулей (без учета кратностей)  такое же, как и у функции g = sin(2x + pi/4). При изменении x: 0 -> 3pi аргумент синуса изменяется на 6pi, т.е. на 3 периода. Т.к. x = 0 и x = 3pi - не нули, то всего нулей в 3 раза больше, чем на одном периоде. Ну, а как известно, на [0, 2pi) синус обнуляется 2 раза.
ответ. 6

27. Пусть tg x = 2, 0 < x < pi/2. Необходимо найти sin(2x).
Найдем сначала cos^2(x), sin^2(x).
Т.к. 1 + tg^2(x) = 1/cos^2(x), то cos^2(x) = 1/(1 + 2^2) = 1/5 и sin^2(x) = 1 - 1/5 = 4/5.
sin^2(2x) = 4sin^2(x)cos^2(x) = 16/25
Т.к. sin(2x) > 0 при 0 < x < pi/2, то sin(2x) = +sqrt(16/25) = 4/5
zubritskiy550
|3-2x|<x+1
Поскольку выражение под знаком модуля может иметь разные знаки, то рассматриваем два случая
1) 3-2x≥0
Найдем, при каких значениях х это выполняется
-2x≥-3
Делим на -2. При делении на отрицательное число знак неравенства меняется.
x≤1.5
По определению модуля
|3-2x|=3-2x
Тогда исходное выражение принимает вид
3-2x<x+1
-3x<-2
x<2/3
Следовательно
\left \{ {{x \leq 1.5} \atop {x \frac{2}{3}}} \right.
Решение в этом случае:
x∈(2/3;1.5]
2) 3-2x<0
-2x<-3
x>1.5
По определению модуля
|3-2x|=-(3-2x)=2x-3
Тогда исходное выражение принимает вид
2x-3<x+1
x<4
Следовательно
\left \{ {{x1.5} \atop {x<4}} \right.
Решение в этом случае:
x∈(1.5;4)
Окончательное решение:
x∈(2/3;1.5]U(1.5;4)
x∈(2/3;4)
Целые решения:
1,2,3
Все они принадлежат указанному отрезку [0;4]. Их число: 3
ответ: 3

Второй
Число целых чисел на отрезке  [0;4] всего 5. Это 0,1,2,3,4
Можно просто подставить их в данное неравенство и проверить, какие подходят
1) х=0
|3-2*0|<0+1
3<1 - неверно
2) х=1
|3-2*1|<1+1
1<2 - верно
3) х=2
|3-2*2|<2+1
1<3 - верно
4) х=3
|3-2*3|<3+1
3<4 - верно
5) х=4
|3-2*4|<4+1
5<5 - неверно
Итого, три правильных решения
ответ: 3

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Домашнее задание: 1. Приведите пример натурального числа.большего 10, которое делится на 10 и неделится на 4.2. Приведите пример натурального числа, большего 11, которое делится на 1 и делитсяна 3, 3. Приведите пример натурального числа, большего 12, которое делится на 12 и делитсяна 5.4. Приведите пример натурального числа, большего 8, которое делится на 8 и не делитсяна 3, 5. Приведите пример натурального числа.большего 14, которое делится на 14 и неделится на 3, ​
Ваше имя (никнейм)*
Email*
Комментарий*