Пошаговое объяснение:
11. На рисунке изображено 2 прямоугольных треугольника.
Рассмотрим меньший треугольник. Его гипотенуза равна 2, а один из катетов равен "х". Обозначим другой катет как "у". Тогда, по теореме Пифагора, для этого треугольника справедливо равенство
Рассмотрим больший треугольник. Один катет равен "у", а другой катет равен "х+2". По аналогии с предыдущим треугольником, получаем:
Получено 2 уравнения с двумя переменными. Запишем и решим систему уравнений:
Избавимся от слагаемого y². Для этого выполним почленное вычитание двух уравнений:
Квадрат суммы двух выражений раскрывается по следующей формуле:
Если перед скобкой стоит знак "–", то знаки слагаемых, находящихся в скобке, меняются на противоположные:
Поделитесь своими знаниями, ответьте на вопрос:
ответы на сор по математике за 5 класс за 1 четветь
Пошаговое объяснение:
ищем определитель через разложение по 1-му столбцу:
2 1 -1
Δ₁₁= 2 -1 3
0 1 2
определитель для этого минора.
∆₁₁ = 2*((-1)*2-1*3)-2*(1*2-1*(-1))+0*(1*3-(-1)*(-1)) = -16
минор для (2,1):
-1 0 3
Δ₂₁= 2 -1 3
0 1 2
определитель для этого минора.
∆₂₁ = (-1)*((-1)*2-1*3)-2*(0*2-1*3)+0*(0*3-(-1)*3) = 11
минор для (3,1):
-1 0 3
∆₃₁ = 2 1 -1
0 1 2
определитель для этого минора.
∆3,1 = (-1)*(1*2-1*(-1))-2*(0*2-1*3)+0*(0*(-1)-1*3) = 3
минор для (4,1):
-1 0 3
Δ₄₁ = 2 1 -1
2 -1 3
определитель для этого минора.
∆₄₁ = (-1)*(1*3-(-1)*(-1))-2*(0*3-(-1)*3)+2*(0*(-1)-1*3) = -14
определитель матрицы
∆ = (-1)⁽¹⁺¹⁾ *1*(-16) + (-1)⁽²⁺¹⁾ *3*11 + (-1)⁽³⁺¹⁾ *1*3 + (-1)⁽⁴⁺¹⁾ *4*(-14) = 10