tatarinova-51
?>

чень Вероятность наличия запчастей в пункте «А» равна 0, 6; в пункте «В» - 0, 7. Какова вероятность: • а) наличия запчастей в обоих пунктах; • б) хотя бы в одном пункте?

Математика

Ответы

tsypant
По условию:
угол DAB=45◦
AC-биссектриса
Наименьшее основание (CB) =52
Решение:
т.к АС-биссектриса, то угол САВ=углу САD=22,5◦
Проведем высоту BH из вершины B на сторону AD:получим прямоугольник HDCB и треугольник ABH
Рассмотрим треугольник ABH:
угол HAB=45◦ по условию
угол AHB=90◦
следовательно угол ABH=45◦
и следовательно треугольник ABH равнобедренный (AH=HB)
Рассмотрим треугольник ABC:
угол ABC=90◦+45◦=135◦
следовательно угол ACB=180◦-(135◦+22,5◦)=22,5◦
Значит треугольник ABC равнобедренный (CB=BA=52)
Вернемся к треугольнику ABH:
AH=HB=x; AB=52
x*x=52
x=√52
Рассмотрим прямоугольник HDCB:
DH=CB=52
BH=√52
следовательно BD=√(52^2+(√52)^2)=√(2704+52)=√2756≈52,5

Ответ: BD=52,5
ТигранКалмыкова
АВСЕ - пирамида с вершиной Е.
В основании лежит правильный тр-ник, для которого радиус описанной окружности в два раза больше радиуса описанной окружности. r=R/2.
ОК=ОВ/2=2а/2=а.
ЕК - апофема на сторону АС.
В тр-ке ЕКО ЕК²=ЕО²+ОК²=3а²+а²=4а²,
ЕК=2а - апофема.
б) ЕК/ОК=2а/а=2. В прямоугольном треугольнике ЕОК гипотенуза ЕК вдвое больше катета ОК, значит ∠КЕО=30°, следовательно ∠ЕКО=60° - угол между боковой гранью и основанием.
в) Площадь боковой поверхности: Sб=Р·l/2, где Р - периметр основания, l - апофема.
R=AB/√3 ⇒ AB=R√3=2a√3.
P=3AB=6a√3.
Sб=6a√3·2a/2=6a²√3 (ед²).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

чень Вероятность наличия запчастей в пункте «А» равна 0, 6; в пункте «В» - 0, 7. Какова вероятность: • а) наличия запчастей в обоих пунктах; • б) хотя бы в одном пункте?
Ваше имя (никнейм)*
Email*
Комментарий*