Поделитесь своими знаниями, ответьте на вопрос:
3. Что такое область определения функции? Что вы понимаете под областью значений функции? 4. При каких условиях считается, что функция задана? Приведите пример. 5. Если область определения специально не указана, то что берется в каче- стве области определения функции? Приведите пример.
x ∈ {2} ∪ (2,5; 4)
Пошаговое объяснение:
1) Если 0 < 3х-4 / х+1 < 1, тогда 2x² - 3x ≤ 17x - 20 - 3x² при условии, что 2x² - 3x > 0.
2) Если 3х-4 / х+1 > 1, тогда 2x² - 3x ≥ 17x - 20 - 3x² при условии, что 17x - 20 - 3x² > 0.
1)
0 < 3х-4 / х+1 < 1
2x² - 3x ≤ 17x - 20 - 3x²
2x² - 3x > 0
3х-4 / х+1 > 0
3х-4 / х+1 < 1
5x² - 20x + 20 ≤ 0
x(2x - 3) > 0
3х-4 / х+1 > 0
3х-4 / х+1 - 1 < 0
x² - 4x + 4 ≤ 0
x(2x - 3) > 0
3х-4 / х+1 > 0
2х-5 / х+1 < 0
(x - 2)² ≤ 0
x(2x - 3) > 0
x ∈ (-∞; -1) ∪ (4/3; +∞)
x ∈ (-1; 5/2)
x = 2
x ∈ (-∞; 0) ∪ (3/2; +∞)
x = 2
2)
3х-4 / х+1 > 1
2x² - 3x ≥ 17x - 20 - 3x²
17x - 20 - 3x² > 0
3х-4 / х+1 - 1 > 0
5x² - 20x + 20 ≥ 0
3x² - 17x + 20 < 0
2х-5 / х+1 > 0
x² - 4x + 4 ≥ 0
3(x - 4)(x - 5/3) < 0
2х-5 / х+1 > 0
(x - 2)² ≥ 0
(x - 4)(x - 5/3) < 0
x ∈ (-∞; -1) ∪ (5/2; +∞)
x ∈ R
x ∈ (5/3; 4)
x ∈ (5/2; 4)
Объединяя 1) и 2): x ∈ {2} ∪ (2,5; 4)