Пошаговое объяснение:
В основном используется табличный интеграл от степенной функции, да ещё от синуса.
\int\limits {x^n} \, dx = \frac{1}{n+1} x^{n+1} +C \\ \\ \int\limits {sinx} \, dx = -cosx + C
1а. f(x)=2-x
\int\limits {(2-x)} \, dx = 2* \frac{1}{0+1} x^{0+1} - \frac{1}{1+1}x^{1+1} + C = 2x - \frac{1}{2} x^2 +C
2б. f(x)=x^4 - sin x
\int\limits {(x^4 - sin x)} \, dx = \frac{1}{4+1}x^{4+1} -(-cosx) +C = \frac{1}{5} x^5+ cosx +C
2в. f(x)= 2/ x^3
\int\limits { \frac{2}{x^3} } \, dx = \int\limits { 2x^{-3} \, dx = 2* \frac{1}{-3+1} x^{-3+1} + C = -x^{-2} + C = - \frac{1}{x^2} + C
Поделитесь своими знаниями, ответьте на вопрос:
В дужках дві цілі одна четверта мінус одна ціла одна четверта помножити на дві сьомі плюс три цілі одна сьома помножити на одну третю поділити на нуль ціліх сім десятих
Пошаговое объяснение:
В основном используется табличный интеграл от степенной функции, да ещё от синуса.
\int\limits {x^n} \, dx = \frac{1}{n+1} x^{n+1} +C \\ \\ \int\limits {sinx} \, dx = -cosx + C
1а. f(x)=2-x
\int\limits {(2-x)} \, dx = 2* \frac{1}{0+1} x^{0+1} - \frac{1}{1+1}x^{1+1} + C = 2x - \frac{1}{2} x^2 +C
2б. f(x)=x^4 - sin x
\int\limits {(x^4 - sin x)} \, dx = \frac{1}{4+1}x^{4+1} -(-cosx) +C = \frac{1}{5} x^5+ cosx +C
2в. f(x)= 2/ x^3
\int\limits { \frac{2}{x^3} } \, dx = \int\limits { 2x^{-3} \, dx = 2* \frac{1}{-3+1} x^{-3+1} + C = -x^{-2} + C = - \frac{1}{x^2} + C