Решение 1. Вместо суммарного процента будем считать суммарную долю девочек ― очевидно, эти числа отличаются в 100 раз и достигают своего максимума одновременно. Каждая девочка в классе из 22 человек составляет от общего числа учащихся в этом классе, а в классе из 23 человек ― от общего числа учащихся. Значит, если поменять местами девочку из большего класса и мальчика из меньшего, суммарный процент девочек вырастет. Таким образом, максимум достигается, когда все подобные перестановки сделаны, то есть, когда меньший класс полностью состоит из девочек, а в большем классе ― 3 девочки и 20 мальчиков.
Решение 2. Пусть в меньший класс распределено х девочек (где ), тогда в больший класс попало девочек. Значит, суммарная доля девочек в двух классах равна и представляет собой линейную функцию с положительным угловым коэффициентом. Значит, эта функция достигает своего наибольшего значения на правом конце промежутка [2; 22], то есть при Таким образом, меньший класс полностью должен состоять из девочек, а в большем классе должно быть 3 девочки и 20 мальчиков.
ответ: В одном классе ― 22 девочки, в другом ― 3 девочки и 20 мальчиков.
1. Если одно из слагаемых увеличить на несколько единиц, то из полученной суммы надо вычесть столько же единиц.
2. Если одно из слагаемых увеличить на несколько единиц, а второе уменьшить на столько же единиц, то сумма не изменится. На основании этого выполняется округление одного слагаемого за счет другого.
3. Если вычитаемое, увеличить на несколько единиц, то, чтобы разность не изменилась, надо и уменьшаемое увеличить на столько же единиц.
4. Если уменьшаемое уменьшить на несколько единиц, то к полученной разности надо прибавить столько же единиц.
быстрого умножения и деления
1. Умножение на 9, 99, 999 и т.д.
Чтобы умножить любое число на число, написанное девятками, надо к первому множителю приписать справа столько нулей, сколько девяток во втором множителе, и из результата вычесть первый множитель.
2. Умножение на число, близкое к единице какого-нибудь разряда.
3. Умножение двузначного числа на 11.
Чтобы умножить двузначное число, сумма цифр которого меньше 10, на 11, надо между цифрами числа написать сумму его цифр
Чтобы умножить на 11 двузначное число, сумма цифр которого больше или равна 10, надо между цифрой десятков, увеличенной на 1, и цифрой единиц написать разность между суммой цифр числа и числом 10.
4. Умножение на 5, 25, 125.
Чтобы умножить число на 5, 25, 125, достаточно разделить его соответственно на 2, 4, 8 и умножить на 10, 100, 1000.
5. Деление на 5, 25, 125.
Чтобы разделить число на 5, 25, 125, достаточно умножить его соответственно на 2, 4, 8 и разделить на 10, 100, 1000.
6. Возведение в квадрат чисел, в записи которых есть цифра 5.
Чтобы возвести в квадрат число, оканчивающееся цифрой 5, надо число его десятков умножить на число, увеличенное на единицу, и справа дописать 25.
Чтобы возвести в квадрат двузначное число, имеющее 5 десятков, надо к числу 25 прибавить число единиц и к результату дописать справа квадрат числа единиц так, чтобы получилось четырехзначное число.
Вроде бы все.
Поделитесь своими знаниями, ответьте на вопрос:
Впервом трамвае было в 3 раза больше пассажиров, чем во втором. после того как в первый трамвай вошли ещё 2 пассажира, а во второй-18, в обеих трамваях их стало поровну. сколько пассажиров было во втором трамвае сначала?
пусть во втором трамвае х пассажиров, тогда3х+2=х+18,3х-х=18-2,х=16/2,х=8 пассажиров во втором трамвае