ответ: t = 1 (с)
Если единицы измерения времени не нужны то выражения в скобках можно убрать.
Пошаговое объяснение:
S(t) = 2t³ + 3t (метр)
Найти t при котором ускорение точки a(t) = 12 (м/с²)
Решение
Ускорение точки находим как вторую производную от функции перемещения.
Первая производная определяет скорость точки в определенный момент времени t.
V(t) = S' = (2t³ + 3t)' = (2t³)' +(3t)' = 6t² + 3 (м/с)
a(t) = V' = (6t² + 3)' = (6t²)' + (3)' = 12t (м/с²)
Найдем значение времени
а(t) = 12
12t = 12
t = 1
Следовательно в момент времени t = 1 с ускорение равно а(t) = 12.
ответ: t = 1 (с)
Если единицы измерения времени не нужны то выражения в скобках можно убрать.
Четыре сечения куба являются правильными шестиугольниками — эти сечения проходят через центр куба перпендикулярно четырём его главным диагоналям.
В куб можно вписать тетраэдр двумя В обоих случаях четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба и все шесть рёбер тетраэдра будут принадлежать граням куба. В первом случае все вершины тетраэдра принадлежат граням трёхгранного угла, вершина которого совпадает с одной из вершин куба. Во втором случае попарно скрещивающиеся ребра тетраэдра принадлежат попарно противолежащим граням куба. Такой тетраэдр является правильным, а его объём составляет 1/3 от объёма куба.
В куб можно вписать октаэдр, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.
Куб можно вписать в октаэдр, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра.
В куб можно вписать икосаэдр, при этом шесть взаимно параллельных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра — внутри куба. Все двенадцать вершин икосаэдра будут лежать на шести гранях куба.
Диагональю куба называют отрезок, соединяющий две вершины, симметричные относительно центра куба. Длина {\displaystyle d} диагонали куба с ребром {\displaystyle a} находится по формуле {\displaystyle d=a{\sqrt {3}}.}
Не знаю правильно
Поделитесь своими знаниями, ответьте на вопрос: