НиканоровСалиев675
?>

Докажите, что если у тетраэдра два отрезка, идущие из вершин некоторого ребра, в центры вписанных окружностей противолежащих граней, пересекаются, то отрезки, выпущенные из вершин скрещивающегося с ним ребра в центры вписанных окружностей двух других граней, также пересекаются

Обществознание

Ответы

triumfmodern

Пусть A1 — центр вписанной окружности  ∆ SBC, B1 — центр вписанной окружности  ∆ SAC, AA1 пересекается с  A, A1, B1, B лежат в одной плоскости, значит прямые AB1 и BA1 пересекаются на ребре SC. Пусть точка пересечения этих прямых — p. Так как Ap и Bp — биссектрисы углов A и B, то . Но тогда AC • BS = BC • AS, отсюда , следовательно биссектрисы углов S в  ∆ ASB и C в  ∆ ACB пересекаются на ребре AB, т.е. точки S, C и центры вписанных окружностей  ∆ ASB и  ∆ ACB лежат в одной плоскости. Отсюда следует, что отрезки, соединяющие вершины S и C с центрами вписанных окружностей противолежащих граней, пересекаются.

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Докажите, что если у тетраэдра два отрезка, идущие из вершин некоторого ребра, в центры вписанных окружностей противолежащих граней, пересекаются, то отрезки, выпущенные из вершин скрещивающегося с ним ребра в центры вписанных окружностей двух других граней, также пересекаются
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

skzzkt
Воздвиженская
sveta073120
asparinapti39
Андрей-Викторовна1910
boykovandrew6663
mail5
yanagitsina
татьяна1245
oslopovavera
Alyona1692
Alekseevna1811
lmedintseva6
MN-Natusik80
An-solomon