ksenia15-79
?>

Расшифруем формулу древостоев 5С3Е1Б1Ос

Окружающий мир

Ответы

tatasi

5С3Е1Б1Ос

сосна - 50%

ель - 30%

берёза - 10%

осина - 10%

Sidunevgeniya

5 сосен три ели одна берёза

kogakinoa

Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических фигур, ограниченных конечным числом звеньев. Самоподобные фигуры, повторяющиеся конечное число раз, называются предфракталами.

natakrechko

Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических фигур, ограниченных конечным числом звеньев. Самоподобные фигуры, повторяющиеся конечное число раз, называются предфракталами.

Множество Мандельброта — классический образец фрактала

Фрактальная форма кочана капусты романеско (Brassica oleracea)

Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке в результате изучения непрерывных недифференцируемых функций (например, функция Больцано, функция Вейерштрасса, множество Кантора). Термин «фрактал» введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы». Особую популярность фракталы обрели с развитием компьютерных технологий, позволивших эффектно визуализировать эти структуры.

Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств:

Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур (таких как окружность, эллипс, график гладкой функции): если рассмотреть небольшой фрагмент регулярной фигуры в очень крупном масштабе, то он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, то есть на всех шкалах можно увидеть одинаково сложную картину.

Является самоподобным или приближённо самоподобным.

Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую размерность.

Многие объекты в природе обладают свойствами фрактала, например: побережья, облака, кроны деревьев, снежинки, система кровообращения, альвеолы.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Расшифруем формулу древостоев 5С3Е1Б1Ос
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ivstigres65
dionissia2
albina6580
Rudakova_Yana
Gesper63
shuxratmaxmedov
girra
motor2218
ermisyareg436
bellatrixstudio
TatarkovTitova
people33
Ольга Сергей1822
iivanovar-da
Azat859