разбиваем координатную прямую на отрезки точками - 2 и 4.
1. при x < - 2 будет |x+2| = - x - 2; |x-4| = 4 - x
-x - 2 + a(4 - x) = 6
-x - 2 + 4a - ax = 6
-x - ax = 6 + 2 - 4a
x(-1-a) = 8-4a
x = (8-4a)/(-1-a) = (4a-8)/(a+1)
при а = - 1 решений нет, иначе надо найти такие а, чтобы было х < - 2.
(4a-8)/(a+1) < - 2
(4a-8)/(a+1) + 2 < 0
(4a-8+2a+2)/(a+1) < 0
(6a-6)/(a+1) < 0
6(a-1)/(a+1) < 0
при a € (-1; 1) будет
х = (4а-8)/(а+1)
при других а решений нет.
2. при х € [-2; 4) будет |x+2| = x +2; |x-4| = 4 - x.
x + 2 + a(4-x) = 6
x + 2 + 4a - ax = 6
x - ax = 6 - 2 - 4a = 4 - 4a
x(1-a) = 4(1-a)
при а = 1 будет 0 = 0, х любое, то есть
x € [2; 4)
при всех других а сокращаем (1-а) и получаем х = 4, не входит в промежуток [2; 4), поэтому решений нет.
3. при x > = 4 будет |x+2| = x +2; |x - 4| = x - 4.
x + 2 + a(x - 4) = 6
x + 2 + ax - 4a = 6
x + ax = 6 - 2 + 4a = 4 + 4a
x(a+1) = 4(a+1)
при а = - 1 будет 0 = 0, x любое, то есть x > = 4.
при всех других а будет х = 4, входит в промежуток.
ответ. при а < -1 будет x = 4.
при а = - 1 будет x > = 4.
при а € (-1; 1) будет х = (4а-8)/(а+1).
при а = 1 будет x € [2; 4).
при а > 1 будет х = 4.
Поделитесь своими знаниями, ответьте на вопрос:
Выделите целую часть числа 31/8 43/10 78/17 917/11
будет 31/8=3,7/8 43/10=4,3/10 78/17=4,10/17 917/11=83,4/11