Aleksey19801
?>

Составить текст-повествование к теме "вот так морковка! "

Русский язык

Ответы

ksvish2012

Составить текст-повествование к теме "Вот так морковка!" предлагаю так:

Весной мы с мамой посадили морковку на даче. Все лето я провела за городом, ухаживая за своим любимым растением. Я бережно поливала морковку, если на улице долго не шли дожди. Также я не забывала о прополке.

Мне было действительно интересно следить за своей морковкой. Вот и подоспел урожай. Я очень обрадовалась! Мама сказала, что уже пора собирать плоды. Я дернула за листья и появился крупный корнеплод. Вот так морковка!

gorodof4292

Диаграмма Венна (также используется название диаграмма Эйлера — Венна) — схематичное изображение всех возможных отношений (объединение, пересечение, разность, симметрическая разность) нескольких (часто — трёх) подмножеств универсального множества. На диаграммах Венна универсальное множество {\displaystyle U}U изображается множеством точек некоторого прямоугольника, в котором располагаются в виде кругов или других фигур все остальные рассматриваемые множества[1][2].

Диаграммы Венна применяются при решении задач вывода логических следствий из посылок, выразимых на языке формул классического исчисления высказываний и классического исчисления одноместных предикатов[3], для :

описания функционирования формальных нейронов Мак-Каллока и сетей из них[4]

синтеза надежных сетей из не вполне надежных элементов[5],

построения управляющих и самоуправляющихся систем и блочного анализа и синтеза сложных устройств[6],

получения логических следствий из заданной информации, минимизации формул исчислений[7][8].

Диаграммы Венна при фигур изображают все {\displaystyle 2^{n}}2^{n} комбинаций {\displaystyle n}n свойств, то есть конечную булеву алгебру[9]. При {\displaystyle n=3}n=3 диаграмма Эйлера — Венна обычно изображается в виде трёх кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.

Дальнейшим развитием аппарата диаграмм Венна в классическом исчислении высказываний является аппарат вероятностных диаграмм [10], понятие сети диаграмм, использующей диаграммы Венна как операторы[11].

Они появились в сочинениях английского логика Джона Венна (1834—1923), подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году.

AnnaChulyukanova3

Леонарду Эйлеру задали во можно ли, прогуливаясь по Кенигсбергу, обойти через все мосты города, дважды не проходя ни через один из них. План города с семью мостами прилагался. В письме знакомому итальянскому математику Эйлер дал краткое и красивое решение проблемы кенигсбергских мостов: при таком расположении задача неразрешима. При этом он указал, что во показался ему интересным, т.к. «для его решения недостаточны ни геометрия, ни алгебра...». При решении многих задач Л. Эйлер изображал множества с кругов, поэтому они и получили название «круги Эйлера». Этим методом ещё ранее пользовался немецкий философ и математик Готфрид Лейбниц, который использовал их для геометрического объяснения логических связей между понятиями, но при этом чаще использовал линейные схемы. Эйлер же достаточно основательно развил метод. Особенно знаменитыми графические методы стали благодаря английскому логику и философу Джону Венну, который ввел диаграммы Венна и подобные схемы часто называют диаграммами Эйлера-Венна. Используются они во многих областях, например, в теории множеств, теории вероятности, логике, статистике и информатике.

Объяснение:

вот

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Составить текст-повествование к теме "вот так морковка! "
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

AndreevManaeva
damir
Yeroshkina411
vladexi
alex091177443
goodsled
Isaeva_Marin1010
inainainainaina0073
mar77873
timsch12
sergeymartyn56
kryukovaem
rusart3
Alyona744
etv771370