sanina611
?>

Шексіз периодты ондық бөлшекти жай бөлшекке аиналдыр а) - 2.4 (8) б) 8 (6)​

Алгебра

Ответы

Gennadevna_Baidalina131

См. Объяснение

Объяснение:

1) Раскроем скобки в левой и правой части неравенства:

х²-10х+3х-30<х²-2х-5х+10

х²-7х-30<х²-7х+10

2) Так как любой член неравенства можно переносить из одной части неравенства в другую, меняя при этом знак на противоположный, то все члены правой части неравенство перенесём в левую часть, изменив их знаки на противоположные:

х²-7х-30- х²+7х-10<0.

3) Таким образом, мы так преобразовали первоначальное неравенство, что теперь надо доказать, что левая часть преобразованного неравенства меньше нуля.  

х² и (- х²) - сокращаются;

(-7х) и (+7х) - сокращаются;

а оставшееся число

(-40) <0.

Получив в итоге число (-40), которое меньше 0, мы таким образом доказали, что действительно:

(х+3)(х - 10) < (х-5)(х - 2).

Mariya-Karaseva

ответ:

раскроем выражение в уравнении

((xy+x)−3)2+((xy+y)−4)2=0

получаем квадратное уравнение

2x2y2+2x2y+x2+2xy2−14xy−6x+y2−8y+25=0

это уравнение вида

a*x^2 + b*x + c = 0

квадратное уравнение можно решить

с дискриминанта.

корни квадратного уравнения:

x1=d−−√−b2a

x2=−d−−√−b2a

где d = b^2 - 4*a*c - это дискриминант.

т.к.

a=2y2+2y+1

b=2y2−14y−6

c=y2−8y+25

, то

d = b^2 - 4 * a * c =

(-6 - 14*y + 2*y^2)^2 - 4 * (1 + 2*y + 2*y^2) * (25 + y^2 - 8*y) = (-6 - 14*y + 2*y^2)^2 - (4 + 8*y + 8*y^2)*(25 + y^2 - 8*y)

уравнение имеет два корня.

x1 = (-b + sqrt(d)) / (2*a)

x2 = (-b - sqrt(d)) / (2*a)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Шексіз периодты ондық бөлшекти жай бөлшекке аиналдыр а) - 2.4 (8) б) 8 (6)​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

egorov
profitgroup51
dmitrievanata83538
Elenabolt77
glebovaludok
Никитина580
Антон-Марина
aniramix
ivanov568
vladimir152
qwert28027170
Юлия1689
fitzhu
Мартынова1638
sklad2445