Решаем иррациональное уравнение √х+4 - √6-х = 2.
Одно из подкоренных выражений заменим переменной t:
при условии, что t больше либо равно 0, √6-х =t, следовательно 6-х =t^2, выражаем х= 6-t^2.
В уравнении х заменяем выражением 6-t^2.
√10-t^2 - t = 2, √10-t^2=2+t, возводим в квадрат обе части уравнения
10-t^2=4+4t+t^2, преобразовываем уравнение:
2t^2+4t-6=0. Мы получили квадратное уравнение, с условием что t больше либо равно 0 и меньше либо равно 2.Вычисляем дискриминант D=b^2-4ac = 16-4*2*6=16-48=-32. Мы получило дискриминант меньше 0. Следовательно уравнение решения не имеет.
Однозначно (-∞; ) ∪ (; +∞).
Понравился ответ? Жду лайк и 5 звезд! )))
Объяснение:
Выражение, находящееся под корнем, не может быть отрицательным. К тому же, сам корень, находясь в знаменателе, не может быть равен нулю. Объединяя эти два условия, имеем:
Корни в скобках и
На координатной прямой это выглядело бы так:
+ - +
--------------------o------------------------o----------------------->
Корни
Знаки "+" стоят на промежутках (-∞; ) ∪ (; +∞).
Поделитесь своими знаниями, ответьте на вопрос:
Раскройте, , скобки и выражение: 4b(b³-5b)+10b(2b-6b²)
4b(b^3-5b)+10b(2b-6b^2)=4b^4-20b^2+20b^2-60b^3=4b^4-60b^3=4b^3(b-15)
p.s.b^2- b во второй степени