dg9792794674
?>

Выражение: а) 3с+а/4с-а-7с/4с; б) 2р/р+3+3-р/р+3; в) х^2/х-4+4х/4-х; г)m/m^2-n^2-n/m^2-n^2. тема: сложение и вычитание дробей с одинаковыми знаменателями 8 класс

Алгебра

Ответы

Тихонова
7с/4с=> > сокращаем остается -7/4 б) все кроме 3-р /р+3 умножь на р+3 потом отбрось знаменатель так как он будет равен во всех случаях и во всех примерах делай так
snabomp

\cos^2\dfrac{x}{4} - \sin^2\dfrac{x}{4} = \sin\left(\dfrac{3\pi}{2} - x\right)

В левой части можно применить формулу косинуса двойного угла:

\boxed{\cos^2\alpha - \sin^2\alpha = \cos2\alpha}

В правой части можно заменить по формуле приведения:

\boxed{\sin\left(\dfrac{3\pi}{2} - \alpha\right) = -\cos\alpha}

Тогда уравнение будет выглядеть так:

\cos\dfrac{x}{2} = -\cos x\\
\\
\\
\cos\dfrac{x}{2} + \cos x = 0

Используем формулу суммы косинусов:

\boxed{\cos\alpha + \cos\beta = 2\cos\dfrac{\alpha + \beta}{2}\cdot\cos\dfrac{\alpha-\beta}{2}}

В нашем случае получается:

2\cos\dfrac{\frac{x}{2} + x}{2}\cdot\cos\dfrac{\frac{x}{2} - x}{2} = 0\\
\\
\\
2\cos\dfrac{\frac{3x}{2}}{2}\cdot\cos\dfrac{-\frac{x}{2}}{2} = 0\\
\\
\\
2\cos\dfrac{3x}{4}\cdot \cos\left(-\dfrac{x}{4}\right) = 0\ \ \ \ \ \Big|:2\\
\\
\\
\cos\dfrac{3x}{4}\cdot\cos\left(-\dfrac{x}{4}\right) = 0

Так как  \boldsymbol{\cos\left(-\alpha\right) = \cos\alpha}, то:

\cos\dfrac{3x}{4}\cos\dfrac{x}{4} = 0

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл. Значит, имеем два варианта:

\left[
\begin{gathered}
\cos\dfrac{3x}{4} = 0\\
\\
\cos\dfrac{x}{4} = 0
\end{gathered}\ \ \ \ \ \ \Leftrightarrow\ \left[
\begin{gathered}
\dfrac{3x}{4} = \dfrac{\pi}{2} + \pi k\\
\\
\dfrac{x}{4} = \dfrac{\pi}{2} + \pi k
\end{gathered}\ \ \ \ \ \ \Leftrightarrow\ \left[
\begin{gathered}
3x = 2\pi + 4\pi k\\
\\
x = 2\pi + 4\pi k
\end{gathered}\ \ \ \ \ \ \Leftrightarrow

\Leftrightarrow\ \left[
\begin{gathered}
x = \dfrac{2\pi}{3} + \dfrac{4\pi k}{3}\\
\\
x = 2\pi + 4\pi k
\end{gathered}\ \ \ \ \ ,\ \boxed{\boldsymbol{k\in\mathbb{Z}}}

Теперь подбираем корни, которые принадлежат отрезку  \boldsymbol{\left[3\pi;\ \dfrac{9\pi}{2}\right]} . Для этого можно решить двойное неравенство для каждой серии корней.

Для первой серии:

3\pi \leqslant\dfrac{2\pi}{3} + \dfrac{4\pi k}{3}\leqslant\dfrac{9\pi}{2}\\
\\
\\
3\leqslant\dfrac{2}{3} + \dfrac{4k}{3} \leqslant \dfrac{9}{2}\\
\\
\\
3 - \dfrac{2}{3} \leqslant \dfrac{4k}{3} \leqslant \dfrac{9}{2} - \dfrac{2}{3}\\
\\
\\
\dfrac{7}{3} \leqslant \dfrac{4k}{3} \leqslant \dfrac{23}{6}\\
\\
\\
14\leqslant 8k\leqslant 23\\
\\
\\
\dfrac{7}{4} \leqslant k\leqslant \dfrac{23}{8}\\
\\
\\
\boldsymbol{1\dfrac{3}{4} \leqslant k\leqslant 2\dfrac{7}{8}}

Не забываем, что k - это обязательно целое число. В данном промежутке есть только одно такое: 2. Значит, \boxed{\boldsymbol{k = 2}} . Подставляем это значение в серию корней, для которой мы решали неравенство.

\dfrac{2\pi}{3} + \dfrac{4\pi \cdot 2}{3} = \dfrac{2\pi}{3} + \dfrac{8\pi}{3} = \boldsymbol{\dfrac{10\pi}{3}}

Одно искомое уже нашли. Теперь тем же самым образом проверим вторую серию корней.

3\pi \leqslant 2\pi + 4\pi k\leqslant \dfrac{9\pi}{2}\\
\\
\\
3\leqslant 2 + 4k\leqslant\dfrac{9}{2}\\
\\
\\
1 \leqslant 4k \leqslant \dfrac{5}{2}\\
\\
\\
\boldsymbol{\dfrac{1}{4} \leqslant k\leqslant \dfrac{5}{8}}

Опять же, учитывая то, что k - целое число, данное неравенство НЕ ИМЕЕТ РЕШЕНИЙ, поскольку в получившемся промежутке нет целых чисел.

Итого мы нашли одно значение, которое одновременно и является корнем уравнения, и входит в промежуток  \left[3\pi;\ \dfrac{9\pi}{2}\right] , а именно \boxed{\boldsymbol{\dfrac{10\pi}{3}}}.

ответ:  \dfrac{10\pi}{3}

cetarbkilork82

примерно 40 а если быть точным то 39,9и тд

Объяснение:

тоесть мы смотри давай решать первое выражение у нас получается 8 в 8 степени и 3 в восьмой степени сейчас мы оставим это в такой же форме и переходим к следущему выражение выходит то что сокращаем получяется одна вторая в шестой степени 2 в  степени это 64 выходит то что 8 в 8степени поделеный на 3 в 8 степени и то умноженое на 1 поделенный на 64 мы можем скоратить восьмерки и получается 8 в шестой степени поделенное на 3 в восьмой степени надеюсь желаю удачи

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Выражение: а) 3с+а/4с-а-7с/4с; б) 2р/р+3+3-р/р+3; в) х^2/х-4+4х/4-х; г)m/m^2-n^2-n/m^2-n^2. тема: сложение и вычитание дробей с одинаковыми знаменателями 8 класс
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Александровна-Грузман
Найти множество значений функции y=2sinx + 5
Теплова
ALLA1868
Kazantsevv_kostya
ВалентиновичСуриковна1104
тригонометрия. функцию. cos^2(pi-a)+sin^2(a-pi)
voen-torg
raa-0485428
Polina780
Александрович
thecoffeeowl
OlgaVasilevna
Maloletkina-marina2
Iiexota280274
ams-sim