а) 4x^2 - 2x = 2x (2x - 1)
б) 2a +a^2 - b^2 - 2b = (2a - 2b)+(a^2 - b^2) = 2 (a - b) + (a - b)(a+b) = (a - b)(2 + a + b)
я нумеровала по столбикам. Извините) То есть первый столб 1...4, второй 5 ...8
Объяснение:
1: сумма односторонних углов равна 180 град, значит, прямые параллельны
2: накрест лежащие углы равны по 40 град, значит, прямые параллельны
3: верхний левый угол и правый- смежные, значит, правый угол равен 180 град минус (60 град+угол альфа)= 120 град - угол альфа. Сумма верхнего правого угла и нижнего правого больше 180 град, следовательно, прямые не параллельны
4: треугольник равнобедренный, значит, углы у основания равны. угол PEM равен EM и какой-то букве, предположим икс. Следовательно, накрест лежащие углы равны и, прямые параллельны.
5: сумма односторонних углов превышает 180 град, значит, прямые не параллельны.
6: прямые параллельны, потому что сумма одностор. углов равна 180 град
7: прямые ВРОДЕ не параллельны. Насчет этого не уверена
8: накрест лежащие углы равны, значит, прямые параллельны
При котором наибольшем значении параметра а уравнение | x² + 8|х | +12 | = а будет иметь 4 корни ?
ответ: a ∈ ∅
Объяснение: | x² + 8|х| +12 |= а ⇔ | |x|² + 8|х| +12 | = а
замена : t = |x | ≥ 0
| t² + 8t +12 | = а
Ясно,что это уравнение может иметь решение , если а ≥ 0
Фиксируем : а ≥ 0 __________________
Если a =0 : t² + 8t +12 = 0
( D = 4 > 0 два корня и они оба отрицательны )
{t₁ + t₂ = - 8 < 0 ; t₁ * t₂ = 12 > 0
* * * t₁ = - 6 ; t₂ = - 2. * * * ⇒ x ∈ ∅
---------------------------------------------------------
[ t² + 8t+ 12 = - a ; (совокупность
[ t² + 8t + 12 = а . уравнений )
---------------------------------------------------------
1 . t² + 8t+ 12 = - a
t² + 8t+ 12 + a =0 , D/4 = 4² - (12+a) = 4 - a
D< 0 ⇔ 4 - a < 0 ⇔ a > 4 → нет корней ( действительных )
D= 0 ⇔ 4 - a = 0⇔ a = 4 двукратный корень t₁ = t₂ = - 4 < 0 → исходное уравнение не имеет корней
D > 0 ⇔ 4 - a > 0⇔ а < 4 → два отрицательных корней
t₁ = -4 - √(4 - a) < 0 ; t₂ = - 4 + √(4 - a) < 0
опять → исходное уравнение не имеет действительных корней
- - - - - - - - - - - - - - - -
2. t² + 8t + 12 = а .
t² + 8t + 12 - а = 0 D/4 = 4² - (12- a) = 4+ a
D< 0 ⇔ 4 + a < 0 ⇔ a < - 4 невозможно ( т.е. для всех a > 0 всегда имеет корней )
D = 0 ⇔ 4 + a = 0⇔ a = - 4 двукратный корень t₁ =t₂ = - 4 < 0 → исходное уравнение не имеет действительных корней
D > 0 ⇔ 4 + a > 0 ⇔ a > - 4 → два корня , притом из них один
t₁ = - 4 - √(4 + a) < 0 отрицательный
t₁ = - 4 - √(4 + a) < 0 ; t₂ = - 4 + √ (4 + a)
Второй корень может принимать значение разных знаков и нуль
t₂ < 0 ⇔ - 4 + √ (4 + a) <0 ⇔√ (4 + a) < 4 ⇔ 0 < a< 12
→ исходное уравнение не имеет корней ( x ∈ ∅ )
t₂ = 0 ⇔ - 4 + √ (4 + a) =0 ⇔√ (4 + a) = 4 ⇔ 4 + a = 16 ⇔ a= 12
→ исходное уравнение имеет один корень x = 0
t₂ > 0 ⇔√(4 + a) > 4 ⇔ 4 + a > 16 ⇔ a > 12
* * * а > 12 исходное уравнение имеет 2 корня * * *
резюме
нет корней : x ∈ ∅ , если - ∞ < a < 12 ;
один корень : x = 0 , если a= 12 ;
максимум два корня , если a > 12 .
Поделитесь своими знаниями, ответьте на вопрос:
Разложите на множители а) 4х^2-2х б) 2а+а^2-b^2-2b
а) =2х(2х-1)
б) =(2a-2b)+(a² - b²)=2(a-b)+(a-b)(a+b)=(a-b)(2+a+b)