Ax^2-4x+3a+1> 0 для всех x> 0 интерплетация данного неравенства означает, что парабола лежит выше оси х, для этого нужно, чтобы выполнялось 2 условия a> 0 , d< 0 d(половинный)=(-2)^-a(3a+1)=4-3a^2+a -3a^2-a+4< 0 3a^2+a-4> 0 3a^2+a-4=0 d=1+4*3*4=49 a1=1 a2=-4/3 3a^2+a-4=3(a+4/3)(a-1)=(3a+4)(a-1) (3a+4)(a-1)> 0 a=-4/3 a=1 отметитм на прямой х и расставим знаки на интервалах -4/3 1 + - + объединяем с a> 0 ⇒ a∈(1,+00)
leonid-adv70
20.07.2020
1) tga/(tga+ctga), cosa=-0,4tga/(tga+ctga)=tga(tga+1/tga)=tga/(tga^2+1)/tga)=tga^2/(tga^2+1)=tga^2*cosa^2=sin^2a sin^2a=1-cos^2a=,4)^2=1-0,16=0,64 2) 3cosa+5sina/2cosa-sina tga=1 3cosa+5sina/2cosa-sina=-13/(tg-2) - 5=13-5=8 (поделил на cosa числитель и знаменатель) 3) а) 1/(tga+ctga)*sina=1(1/ctga+ctga)sina=1/((ctg^2+1)/ctga*sina=ctga*sina/ctg^2+1=cosa/(ctg^2+1)=cosa/(cos^2/sin^2+1))=cosa/sin^2б) sin^4a+sin^2a*cos^2a+cos^2a=sin^2a(sin^2a+cos^2a)+cos^2a=sin^a+cos^2a=1