Задания на свойства и графики квадратичной функции вызывают, как показывает практика, серьезные затруднения. Это довольно странно, ибо квадратичную функцию проходят в 8 классе, а потом всю первую четверть 9-го класса "вымучивают" свойства параболы и строят ее графики для различных параметров.
Это связано с тем, что заставляя учащихся строить параболы, практически не уделяют времени на "чтение" графиков, то есть не практикуют осмысление информации, полученной с картинки. Видимо, предполагается, что, построив десятка два графиков, сообразительный школьник сам обнаружит и сформулирует связь коэффициентов в формуле и внешний вид графика. На практике так не получается. Для подобного обобщения необходим серьезный опыт математических мини исследований, которым большинство девятиклассников, конечно, не обладает. А между тем, в ГИА предлагают именно по графику определить знаки коэффициентов.
Не будем требовать от школьников невозможного и предложим один из алгоритмов решения подобных задач.
Итак, функция вида y = ax2 + bx + c называется квадратичной, графиком ее является парабола. Как следует из названия, главным слагаемым является ax2. То есть а не должно равняться нулю, остальные коэффициенты (b и с) нулю равняться могут.
Посмотрим, как влияют на внешний вид параболы знаки ее коэффициентов.
Самая зависимость для коэффициента а. Большинство школьников уверенно отвечает: " если а > 0, то ветви параболы направлены вверх, а если а < 0, – то вниз". Совершенно верно. Ниже приведен график квадратичной функции, у которой а > 0.
y = 0,5x2 - 3x + 1
В данном случае а = 0,5

А теперь для а < 0:
№2 х₁= -2; х₂= -1/3.
№3 (5у-2х)(5у+2х).
№4 5(3-а)².
Объяснение:
№2
Решить уравнение:
(3х + 1)(7х + 14) = 0
21х²+42х+7х+14=0
21х²+49х+14=0
Разделим уравнение на 7 для упрощения:
3х²+7х+2=0, квадратное уравнение, ищем корни:
D=b²-4ac =49-24=25 √D= 5
х₁=(-b-√D)/2a
х₁=( -7-5)/6
х₁= -12/6
х₁= -2
х₂=(-b+√D)/2a
х₂=(-7+5)/6
х₂= -2/6
х₂= -1/3
№3
Разложить на множители:
25у² – 4х² разность квадратов
25у² – 4х²=(5у-2х)(5у+2х).
№4
Разложить на множители, применив формулы сокращенного умножения:
45 – 30а + 5а²=
=5(9-6а+а²)= квадрат разности:
=5(3-а)².
Поделитесь своими знаниями, ответьте на вопрос:
Найдите решение уровнения: (1/8)^х+6 = 512^x