Уравнение
2k-4k2-49-k-4k2-7k=k-1k2+7k
2k-4k2-49-k-4k2-7k=k-1k2+7k
2k-4k2-49-k-4k2-7k=k-k2+7k
Найдем подобные для k:
2k-4k2-49-k-4k2-7k=k-k2+7k
Получаем:
-6k-4k2-49-4k2=8k-k2
Теперь найдем подобные для k2:
-6k-4k2-49-4k2=8k-k2
Получаем:
-6k-8k2-49=8k-k2
Перенесем известные в лево, а не известные в право:
-6k-8k-8k+k2=49
Заметим, что тут тоже есть подобные. Приведем их:
-6k-8k2-8k+k2=49
и
-6k-8k2-8k+k2=49
Получим:
-14k-4k2=49
Теперь решим:
-14k-4k2=49
14k+4k2=-49
2k(2k+7)=-49
16/147(k+7/4)^2=-1
4k2+14k+49=0
С решением не могу быть точным, т.к. еще не сталкивался с этим
1) При x ≥ 9 значения функции y = -5x - 3 не больше -48.
2) При x > -4 значения функции y = -3/4 *x - 1 меньше 2.
Объяснение:
Рисунки прилагаются.
1) y = -5x - 3 линейная функция, график прямая линия, пересекает ось OY в точке (0; --3).
Выберем еще одну точку и построим график функции: x = 10; y = -50-3 = -53.
При каких значениях x значения функции не больше (значит меньше или равно) -48?
Построим в этой же системе координат прямую y = -48.
По графикам видно, что что -5x - 3 ≤ -48 при x ≥ 9
Проверим аналитически:
-5x -3 ≤ -48; -5x ≤ -48 +3; -5x ≤ -45; x ≥ 9.
2) y = -3/4*x - 3 = -0,75x - 1 линейная функция, график прямая линия, пересекает ось OY в точке (0; -1).
Выберем еще одну точку и построим график функции: x = 4;
y = -0,75*4 -1 = -3 - 1 = -4.
При каких значениях x значения функции меньше 2?
Построим в этой же системе координат прямую y = 2.
По графикам видно, что -0,75x - 1 ≤ -2 при x > -4
Проверим аналитически:
-0,75x -1 < 2; -0,75x < 3; x > -4.

Поделитесь своими знаниями, ответьте на вопрос: