1. Берілген нүктелер арқылы өтетін түзудің теңдеуін жазыңыз: А(2;1) В(-1;2). [2 ұпай]
2. Шеңбердің берілген теңдеуі бойынша оның центрінің координаталары мен радиусын табыңыз: (х-4)2 +(у+8)2 =36 [1 ұпай]
3. нүктелері берілген.
a) төбелерінің координаталары бойынша салыңыз; [1 ұпай]
b) қабырғаларының ұзындықтарын табыңыз; [3 ұпай]
c) түрін анықтаңыз (теңқабырғалы, теңбүйірлі, тікбұрышты); [2 ұпай]
d) берілген үшбұрыштың ауданын есептеңіз. [2 ұпай]
4. Төбелері А (1;-1) В (0;1) С (4;3) және Д (5;1) нүктелері болатын төртбұрыштың тіктөртбұрыш болатынын дәлелдеп, оның ауданын табыңыз. Ол үшін:
a) төбелерінің координаталары бойынша сызбасын салыңыз; [1 ұпай]
b) қабырғаларының ұзындықтарын табыңыз; [4 ұпай]
c) диагональдарын анықтап, дәлелдеңіз; [2 ұпай]
d) тіктөртбұрыштың ауданын есептеңіз. [2 ұпай]
Объяснение:
ПАМАГИТЕЕЕЕПоделитесь своими знаниями, ответьте на вопрос:
Существует ли такое значение а, при котором неравенство ax< 4x-1 не имеет решений , надо
7; -4
Объяснение Решение методом подбора корней:
Записываем исходное уравнение:
(х - 7)(х + 4) = 0
Подбираем х:
х1 = 7, х Решение через раскрытие скобок, теорему Виета, и дискриминант:
Записываем исходное уравнение:
(х - 7)(х + 4) = 0
Раскрываем скобки:
х*х - 7x + 4x - 28 = 0
x^2 - 7x + 4x - 28 = 0
Приводим подобные:
x^2 - 3x - 28 = 0
1 под Решаем через теорему Виета:
x1 + x2 = 3
x1*x2 = -28
Откуда:
x1 = 7, x2 = -4
2 под Решение через дискриминант
Записываем исходное уравнение:
x^2 - 3x - 28 = 0
Ищем дискриминант:
D = b^2 - 4ac
D = (-3)^2 -4*1*(-28)
D = 9 - (-112)
D = 9 + 112 = 121
Находим корни уравнения:
В данном решении показано решения данного уравнения. (причем имеет 2 под