mshelen732
?>

Найдите множество корней уравнения y^3 - 12 = 3y^2 - 4y

Алгебра

Ответы

kolefe22171
Kkk0368 3 минута тому y^2(y-3)+4y-12=0. y^2(y-3)+4(y-3)-12=0. (y^2+4)(y-3)-12=0. y^2+4=0. y^2=-4. нет решений. y-3=0.y=3
baron
Абсциссы точек касания    x_1,x_2x​1​​,x​2​​    .       угловые коэфф. касательных      k_1=y'(x_1),\; k_2=y'(x_2)k​1​​=y​′​​(x​1​​),k​2​​=y​′​​(x​2​​)  уравнение касательной:   y=y(x_1)+y'(x_1)(x-x_1)y=y(x​1​​)+y​′​​(x​1​​)(x−x​1​​)  \begin{lgathered}y=x^2,\; \; y(x_1)=x_1^2\\\\y'=2x,y'(x_1)=2x_1\\\\yravn.kasat.\; \; y=x_1^2+2x_1(x-x_1)\end{lgathered}​y=x​2​​,y(x​1​​)=x​1​2​​​​y​′​​=2x,y​′​​(x​1​​)=2x​1​​​​yravn.kasat.y=x​1​2​​+2x​1​​(x−x​1​​)​​ теперь подставим координаты точки, через которую проходит касательная, (0,-2) , в уравнение касательной вместо переменных: \begin{lgathered}-2=x_1^2+2x_1(0-x_1)\\\\-2=x_1^2-2x_1^2,\; \; x_1^2=2,\; x_1=\sqrt2,\\\\x_2=-\sqrt2\end{lgathered}​−2=x​1​2​​+2x​1​​(0−x​1​​)​​−2=x​1​2​​−2x​1​2​​,x​1​2​​=2,x​1​​=√​2​​​,​​x​2​​=−√​2​​​​​ в принципе мы имеем обе точки касания:   a(\sqrt2,2),\; b(-\sqrt2,2)a(√​2​​​,2),b(−√​2​​​,2)  подставим значения абсцисс в уравнение касательной. \begin{lgathered}a)\; \; y=2+2\sqrt2(x-\sqrt2)\; \to \; y=2+2\sqrt2x-4,\\\\y=2\sqrt2x-2\; \to k_1=2\sqrt2\\\\b)\; \; y=2-2\sqrt2(x+\sqrt2),\to \; y=-2\sqrt2x-2\; \to k_2=-2\sqrt2\end{lgathered}​a)y=2+2√​2​​​(x−√​2​​​)→y=2+2√​2​​​x−4,​​y=2√​2​​​x−2→k​1​​=2√​2​​​​​b)y=2−2√​2​​​(x+√​2​​​),→y=−2√​2​​​x−2→k​2​​=−2√​2​​​​​ угол между прямыми можно найти по формуле  \begin{lgathered}tg \alpha =|\frac{k_1-k_2}{1+k_1k_2}|\\\\tg \alpha =|\frac{)}{1+2\sqrt2(-2\sqrt2)}|=|\frac{4\sqrt2}{1-8}|=\frac{4\sqrt2}{7}\\\\ \alpha =arctg\frac{4\sqrt2}{7}\end{lgathered}​tgα=∣​1+k​1​​k​2​​​​k​1​​−k​2​​​​∣​​tgα=∣​1+2√​2​​​(−2√​2​​​)​​2√​2​​​−(−2√​2​​​)​​∣=∣​1−8​​4√​2​​​​​∣=​7​​4√​2​​​​​​​α=arctg​7​​4√​2​​​​​​​
uzunanna19922488
2x^2 + 3y^2 = 216x^2 + 9y^2 = 21x  умножим обе части 1-го равенства на 3 6x^2 + 9y^2 = 636x^2 + 9y^2 = 21xвычтем из 1-го равенства второе6x^2 -  6x^2+ 3y^2 -  6y^2 = 63 - 21x       21x = 63                         x = 3 6x^2 + 9y^2 = 21x                                     6x^2 + 9y^2 = 21x         6x^2 + 9y^2 = 21x x=3                             x=3             x=3         x=36*9+9*y^2=21*3       9*y^2=9      y^2=1     y= +-1ответ: x=3, y= +-1

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите множество корней уравнения y^3 - 12 = 3y^2 - 4y
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

nataliaterekhovasinger2
Panfilov_Anna
ekattatarenko
ganzashop
Batishcheva
АЛЕКСЕЙ
korolev-comitet8825
asyaurkova
vitaliy
nelli-bi6
ritckshulga20112
irkm8
kav511
many858
Яковчук1911