ответ: радиус равен 28
Объяснение:
Проведем радиусы окружности к точкам касания со сторонами квадрата, как показано на рисунке. Обозначим ключевые точки A, B, C и D. ABCD образует четырехугольник. В этом четырехугольнике: ∠A=90° (по определению квадрата). ∠B=∠D=90° (по свойству касательной). Тогда и ∠С=90° (так как сумма углов четырехугольника равна 360°). Т.е. ABCD - прямоугольник (по определению). По свойству прямоугольника: AB=CD=R AD=BD=R Т.е. ABCD - квадрат. Из рисунка очевидно, что радиус равен половине стороны квадрата: R=56/2=28
ответ:
[3; 5].
объяснение:
1) ⁴√(x-3)⁴ = lx-3l;
⁶√(5-x)⁶ = l5-xl, тогда
⁴√(x-3)⁴+⁶√(5-x)⁶= 2
lx-3l + l5-xl =2
2) найдём нули подмодульных выражений:
х-3 = 0, х=3;
5-х = 0, х=5.
✓ если x∈ (-∞; 3] , то lх-3l = -x+3; l5-xl = 5-x;
-x+3+5-x=2
-2x=2-8
-2x=-6
x=3
3 является корнем уравнения.
✓ если x∈ (3 ; 5), то lх-3l = x-3; l5-xl = 5-x;
x-3+5-x=2
0•x=0
любое число из промежутка (3 ; 5) является корнем.
✓ если x∈ [5 ; +∞), то lх-3l = x-3; l5-xl = -5+x;
x-3-5+x=2
2x=2+8
2х = 10
х =5
5 является корнем уравнения.
объединяя полученные решения, получим:
{3}∪(3; 5)∪{5} = [3; 5].
Поделитесь своими знаниями, ответьте на вопрос:
Представьте в виде многочлена (3+p)^2 (c-2)^2 (0, 4+d)^2 (k-0, 5)^2 (-x+y)^2 (-m-n)^2