fastprofit
?>

Представить в виде произведения: а) (х – 4)2 – 25х2; б) а2 – в2 – 4а – 4в.

Алгебра

Ответы

lukanaft
А) (x-4-5x)(x-4+5x)=(-4x-4)(6x-4) б) (а-в)(а+в)-4(а+в)=(а-в-4)(а+в)
nord248

Объяснение:

В)касательная к графику в точке должна:

1)проходить через точку Xo

2)Иметь такой же угол наклона как и график в точке

Значит мы должны найти такое уравнение прямой которое соответствовало бы этим параметрам.

Угол наклона в точке характеризует производная в точке т.к по сути

производная в точке это тангенс угла наклона в этой точке.

Уравнение прямой в общем виде y=kx+b, где k - это как раз тот тангенс который мы найдем по производной, а b - свободный член.

Приступим к расчетам:

F(x) =х^2+1,х0=1

Возьмем производную

F(x)'=2x

тогда производная в точке Xo=1: F(Xo)'=2

значит k=tg(a)=2

получаем прямую y=2x+b

осталось чтобы прямая проходила через заданную точку функции

найдем значение функции в точке Xo=1: F(Xo)=1^2+1=2

значит прямая должна проходить через точку (1;2)

подставим точку в полученное уравнение прямой чтобы найти коэф. b

2=2*1+b

b=0

значит уравнение касательной y=2x

Г)А теперь повторим все только без обьяснений)

f(x)=х^3-1,х0=2

f(x)'=3x^2

f(Xo)'=2^2*3=12

k=tg(a)=6;=> y=12x+b

f(Xo)=2^3-1=7; =>  (2;7)

подставляем чтобы найти b

7=2*12+b

7=24+b

b=-14

Значит уравнение касательной в точке y=12x-14

Федор_Рауф1592
Lx^2-9l+lx^2-16l = 7 1)  x^2-9+ x^2-16 =7    2)  -x^2-9- x^2-16  =7         2x^2-25=7                                -2x^2+25=7          2x^2   = 32                                -2x^2   =  -18            -2x^2                                                 x^2 =  9            x = 4                                                x= 3              

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Представить в виде произведения: а) (х – 4)2 – 25х2; б) а2 – в2 – 4а – 4в.
Ваше имя (никнейм)*
Email*
Комментарий*