х кг - масса первого сплава
у кг - масса второго сплава
Первое уравнение:
х + у = 400
8% = 0,08
12% = 0,12
9% = 0,09
0,08х кг - масса олова в первом сплаве
0,12у кг - масса олова во втором сплаве
0,09 · 400 = 36 кг - масса олова в новом сплаве
Второе уранение:
0,08х + 0,12у = 36
А теперь решаем систему:
{х + у = 400
{0,08х + 0,12у = 36
Из первого уравнения выразим у
у = 400 - х
и подставим во второе
0,08х + 0,12·(400 - х) = 36
0,08х + 48 - 0,12х = 36
0,08х -0,12х = 36 - 48
-0,04х = - 12
х = -12 : (-0,04)
х = 300 кг - первого сплава надо взять
400 - 300 = 100 кг - второго сплава
ответ: 300 кг; 100 кг.
Объяснение:
1) Треугольники ABM и CBM
AB=BC (по условию)
BM - общая
∠M=90° (по условию)
Вывод: треугольники равны по катету и гипотенузе
2) Треугольники FDN и NKF
DN=FK (по условию)
FN - общая
∠D=∠K=90° (по условию)
Вывод: треугольники равны по катету и гипотенузе
3) Треугольники SDO и SPO
∠D=∠P=90° (по условию)
SO - общая
∠SOD=∠SOP (по условию)
Вывод: треугольники равны по гипотенузе и острому углу
4) Треугольники RMX и XNR
RX - общая
∠MXR=∠NRX (по условию)
∠M=∠N=90° (по условию)
Вывод: треугольники равны по гипотенузе и острому углу
Треугольники MRT и NXT:
RT=XT (тк ∠MXR=∠NRX (по условию), треугольник RTX - равнобедренный (по свойству))
∠M=∠N=90° (по условию)
Из доказательства пары этого пункта ∠MRX=∠NXR (соотв. элементы равных фигур равны), но ∠MXR=∠NRX (по условию)=> ∠MRT=∠NXT
Вывод: треугольники равны по гипотенузе и острому углу
Поделитесь своими знаниями, ответьте на вопрос:
Решить: 1. сократите дробь 2х^2-5х-3/3-х 2. при каких значениях а уравнение х^2-(3а+3)х+2а^2+3а/х-2=0 а имеет один корень; б). имеет только положительные корни заранее ^-^