cамый легкий здесь - использование формул сокращенного умножения. так (х²+1)²=х⁴+2х²+1, поэтому, если представить, что
х²=2х²-х², то легко выйти на формулу разности квадратов, итак,
х⁴+х²+1 =(х⁴+2х²+1) -х²=(х²+1)²-х²=(х²+1-х)(х²+1+х), конечно, можно продолжать раскладывать каждый квадратный трехчлен на множители, но уже не на действительные, т.к. у каждой скобки дискриминант меньше нуля, и действительных корней не получим. итак, если необходимо продолжить, то
х²+1-х=0; х=(1±√(1-4))/2=(1±√3i)/2, и тогда (х²+1-х)=(х-(1+√3i)/2)((х-(1-√3i)/2);
аналогично х²+1+х=0; х=(-1±√(1-4))/2=(1±√3i)/2, и тогда (х²+1+х)=
(х-(-1+√3i)/2)((х-(-1-√3i)/2);
и разложение можно продолжить.
х⁴+х²+1 =(х-(1+√3i)/2)((х-(1-√3i)/2)(х-(-1+√3i)/2)((х-(-1-√3i)/2);
Правило нахождения точек перегиба графика функции y = f(x)
1)Найти вторую производную f’’(x).2)Найти критические точки II рода функции y=f(x), т.е. точки, в которой f’’(x) обращается в нуль или терпит разрыв.Исследовать знак второй производной f’’(x) в промежутка, на которые найденные критические точки делят область определения функции f(x). Если при этом критическая точка x0 разделяет промежутки выпуклости противоположных направлений, то x0 является абсциссой точки перегиба графика функции.Вычислить значения функции в точках перегиба
Поделитесь своими знаниями, ответьте на вопрос:
Найти наибольшее и наименьшее значение функции 1.у= (х-1)^2*(х-4) на отрезке [0, 2] 2. y=sin2x на отрезке [п/12, п/2]