changes made to your input should not affect the solution: (1): "c2" was replaced by "c^2". 2 more similar replacement(s).
step by step solution : skip ad step 1 : c2 simplify c - a equation at the end of step 1 : (a2) (b2) c2 •(a-c))+•(b-+•(c-b)) (a-b) (b-c) c-a step 2 : equation at the end of step 2 : (a2) (b2) c2•(c-b) •(a-c))+•(b-+ (a-b) (b-c) c-a step 3 : b2 simplify b - c equation at the end of step 3 : (a2) b2 c2•(c-b) •(a-c))+•(b-+ (a-b) b-c c-a step 4 : equation at the end of step 4 : (a2) b2•(b-a) c2•(c-b) •(a-c))++ (a-b) b-c c-a step 5 : a2 simplify a - b equation at the end of step 5 : a2 b2•(b-a) c2•(c-b) •(a-c))++ a-b b-c c-a step 6 : equation at the end of step 6 : a2•(a-c) b2•(b-a) c2•(c-b) ++ a-b b-c c-a step 7 : calculating the least common multiple :7.1 find the least common multiple the left denominator is : a-b the right denominator is : b-c
number of times each algebraic factor appears in the factorization of: algebraic factor left denominator right denominator l.c.m = max {left,right} a-b 101 b-c 011least common multiple: (a-b) • (b-c)
calculating multipliers :7.2 calculate multipliers for the two fractions denote the least common multiple by l.c.m denote the left multiplier by left_m denote the right multiplier by right_m denote the left deniminator by l_deno denote the right multiplier by r_deno left_m = l.c.m / l_deno = b-c right_m = l.c.m / r_deno = a-b
making equivalent fractions :7.3 rewrite the two fractions into equivalent fractionstwo fractions are called equivalent if they have the same numeric value.for example : 1/2 and 2/4 are equivalent, y/(y+1)2 and (y2+y)/(y+1)3 are equivalent as well. to calculate equivalent fraction , multiply the numerator of each fraction, by its respective multiplier.
l. mult. • l. num. a2 • (a-c) • (b-c) = l.c.m (a-b) • (b-c) r. mult. • r. num. b2 • (b-a) • (a-b) = l.c.m (a-b) • (b-c) adding fractions that have a common denominator :7.4 adding up the two equivalent fractions add the two equivalent fractions which now have a common denominatorcombine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
a2 • (a-c) • (b-c) + b2 • (b-a) • (a-b) a3b - a3c - a2b2 - a2bc + a2c2 + 2ab3 - b4 = (a-b) • (b-c) (a - b) • (b - c) equation at the end of step 7 : (a3b - a3c - a2b2 - a2bc + a2c2 + 2ab3 - b4) c2 • (c - b) + (a - b) • (b - c) c - a step 8 : calculating the least common multiple :8.1 find the least common multiple the left denominator is : (a-b) • (b-c) the right denominator is : c-a
number of times each algebraic factor appears in the factorization of: algebraic factor left denominator right denominator l.c.m = max {left,right} a-b 101 b-c 101 c-a 011least common multiple: (a-b) • (b-c) • (c-a)
calculating multipliers :8.2 calculate multipliers for the two fractions denote the least common multiple by l.c.m denote the left multiplier by left_m denote the right multiplier by right_m denote the left deniminator by l_deno denote the right multiplier by r_deno left_m = l.c.m / l_deno = c-a right_m = l.c.m / r_deno = (a-b)•(b-c)
making equivalent fractions :8.3 rewrite the two fractions into equivalent fractions
l. mult. • l. num. (a3b-a3c-a2b2-a2bc+a2c2+2ab3-b4) • (c-a) = l.c.m (a-b) • (b-c) • (c-a) r. mult. • r. num. c2 • (c-b) • (a-b) • (b-c) = l.c.m (a-b) • (b-c) • (c-a) adding fractions that have a common denominator :8.4 adding up the two equivalent fractions
(a3b-a3c-a2b2-a2bc+a2c2+2ab3-b4) • (c-a) + c2 • (c-b) • (a-b) • (b-c) -a4b+a4c+a3b2+2a3bc-2a3c2-2a2b3-a2b2c-a2bc2+a2c3+ab4+2ab3c-ab2c2+2abc3-ac4-b4c+b3c2-2b2c3+bc4 = (a-b) • (b-c) • (c-a) (a-b) • (b-c) • (c-a) final result : -a4b+a4c+a3b2+2a3bc-2a3c2-2a2b3-a2b2c-a2bc2+a2c3+ab4+2ab3c-ab2c2+2abc3-ac4-b4c+b3c2-2b2c3+bc4 (a-b)•(b-c)•(c-a)processing ends successfully
latest drills solved (-4,7)to(94,-55)(5)/(7)+(4)/(y)=38(x+8/9)-9 a2/(a-b)(a-c)+b2/(b-c)(b-a)+c2/(c-a)(c-b)Поделитесь своими знаниями, ответьте на вопрос:
Робитник мав за певний час виготовити 72 детали проте щодня він виготовляв на 4 деталі більше і закінчив роботу на 3 дні раніше. за скільки днів він виконав роботу?