— квадратичная функция, график которой — парабола с ветвями, направленными вверх.
Нули функции:
Согласно теореме Виета, имеем:
По условию или .
Следовательно, подставляя значения и , найдем параметр :
Таким образом, , то есть
Найдем координаты точки вершины параболы:
Значит, — точка вершины параболы.
Найдем точки пересечения с осями координат:
а) С осью абсцисс:
Следовательно, и — точки пересечения функции с осью абсцисс.
б) С осью ординат:
Следовательно, — точка пересечения с осью ординат.
Согласно свойству симметрии параболы, — точка графика.
Изобразим график данной функции (см. вложение).
— квадратичная функция, график которой — парабола с ветвями, направленными вверх.
Нули функции:
Согласно теореме Виета, имеем:
По условию
Следовательно, подставляя значения и , найдем параметр :
Таким образом,
Найдем координаты точки вершины параболы:
Найдем точки пересечения с осями координат:
а) С осью абсцисс:
Следовательно, и — точки пересечения функции с осью абсцисс.
б) С осью ординат:
Следовательно, — точка пересечения с осью ординат.
Согласно свойству симметрии параболы, — точка графика.
Изобразим график данной функции (см. вложение).
Поделитесь своими знаниями, ответьте на вопрос:
5sin54/cos37*cos53 нужна ваша .буду
Общая формула прямой: y=kx+b, где k - угол наклона к оси Ох, а b - смещение по у.
Найдем сначала k: k = тангенсу угла, образованного прямой и осью Ох. Образуем прямоуг. треугольник (как угодно), чтобы найти тангенс. Самый простой - "верхняя часть" показанной функции. Тангенс = 4 (катет = 4 поделить на катет = 1)
Если без тангенса, то можно вычислить логически: за ∆х = 1, ∆у = 4, k - это "скорость" возрастания функции, следует k = 4.
b найти еще проще, смещение по у = -4, следует b = -4.
Иначе, чтобы найти b, нужно чтобы формула приняла вид y = b, такое возможно при х =0. Находим на графике координаты у при х = 0, у = -4, следует b = -4.
Подставляем в формулу:
y = 4x - 4