Anatolevich667
?>

Хитрости делящиеся на 11 удобным способом

Алгебра

Ответы

Gesper63
Число  делится на 11, если сумма цифр, стоящих на четных местах, равна сумме цифр, стоящих на нечетных местах, или отличается от неё на 11. например,  671  делится  на  11.  на  нечетных  местах  стоят  6  (на  первом)  и  1  (на  третьем).  их  сумма  равна  7.  как  и  та  7,  что  стоит  на  четном  (втором)  месте.  число  671 делится  на  11.  рассмотрим  делится  ли  3905  на  11.  сумма  на  нечетных  местах  3+0=3,  сумма  на  четных  местах  9+5=14. суммы отличаются на 14-3=11. число 3905 делится  на 11.
annasv8

1. Найдите значение производной функции в точке x₀:

a) y=(3·x-2)⁷, x₀=3

y'=((3·x-2)⁷)'=7·(3·x-2)⁶·(3·x-2)'=7·(3·x-2)⁶·3=21·(3·x-2)⁶

y'(3)=21·(3·3-2)⁶=21·7⁶=21·117649=2470629

б) y=(4-5·x)⁷, x₀=1

y'=((4-5·x)⁷)'=7·(4-5·x)⁶·(4-5·x)'=7·(4-5·x)⁶·(-5)= -35·(4-5·x)⁶

y'(1)= -35·(4-5·1)⁶= -35·(-1)⁶= -35·1= -35

в) y=(2·x+3)⁵, x₀=2

y'=((2·x+3)⁵)'=5·(2·x+3)⁴·(2·x+3)'=5·(2·x+3)⁴·2=10·(2·x+3)⁴

y'(2)=10·(2·2+3)⁴=10·7⁴=10·2401=24010

г) y=(5-3·x)⁷, x₀=1

y'=((5-3·x)⁷)'=7·(5-3·x)⁶·(5-3·x)'=7·(5-3·x)⁶·(-3)= -21·(5-3·x)⁶

y'(1)= -21·(5-3·1)⁶= -21·2⁶= -21·64= -1344

2. Вычислить скорость изменения функции в точке x₀ (скорость изменения равносильно производная первого порядка):

a) y=(2x+1)⁵, x₀= -1

y'=((2·x+1)⁵)'=5·(2·x+1)⁴·(2·x+1)'=5·(2·x+1)⁴·2=10·(2·x+1)⁴

y'(-1)=10·(2·(-1)+1)⁴=10·(-1)⁴=10·1=10

б) \displaystyle y=\sqrt{7 \cdot x-3}y=

7⋅x−3

, x₀= 1

\begin{gathered}\displaystyle y'=(\sqrt{7 \cdot x-3})' =((7 \cdot x-3)^{\frac{1}{2} })'=\dfrac{1}{2} \cdot (7 \cdot x-3)^{\frac{1}{2}-1} \cdot (7 \cdot x-3)'==\dfrac{1}{2} \cdot (7 \cdot x-3)^{-\frac{1}{2}} \cdot 7=\dfrac{7}{2} \cdot (7 \cdot x-3)^{-\frac{1}{2}}\end{gathered}

y

=(

7⋅x−3

)

=((7⋅x−3)

2

1

)

=

2

1

⋅(7⋅x−3)

2

1

−1

⋅(7⋅x−3)

=

=

2

1

⋅(7⋅x−3)

2

1

⋅7=

2

7

⋅(7⋅x−3)

2

1

\displaystyle y'(1)=\dfrac{7}{2} \cdot (7 \cdot 1-3)^{-\frac{1}{2}}=\dfrac{7}{2} \cdot 4^{-\frac{1}{2}}=\dfrac{7}{2} \cdot 2^{-1}= \dfrac{7}{2} \cdot\frac{1}{2}=\dfrac{7}{4}=1\dfrac{3}{4}y

(1)=

2

7

⋅(7⋅1−3)

2

1

=

2

7

⋅4

2

1

=

2

7

⋅2

−1

=

2

7

2

1

=

4

7

=1

4

3

в) \displaystyle y=\frac{4}{12 \cdot x-5}y=

12⋅x−5

4

, x₀= 2 \displaystyle\begin{gathered}\displaystyle y'=(\frac{4}{12 \cdot x-5})'=(4 \cdot (12 \cdot x-5)^{-1})'=4 \cdot (-1) \cdot (12 \cdot x-5)^{-1-1} \cdot (12 \cdot x-5)'==-4 \cdot (12 \cdot x-5)^{-2} \cdot 12=-48 \cdot (12 \cdot x-5)^{-2}\end{gathered}

y

=(

12⋅x−5

4

)

=(4⋅(12⋅x−5)

−1

)

=4⋅(−1)⋅(12⋅x−5)

−1−1

⋅(12⋅x−5)

=

=−4⋅(12⋅x−5)

−2

⋅12=−48⋅(12⋅x−5)

−2

\displaystyle y'(2)=-48 \cdot (12 \cdot 2-5)^{-2}= \frac{-48 }{19^{2}}=-\frac{48 }{361}}

г) \displaystyle y=\sqrt{11-5 \cdot x}y=

11−5⋅x

, x₀= -1\begin{gathered}\displaystyle y'=(\sqrt{11-5 \cdot x})' =((11-5 \cdot x)^{\frac{1}{2} })'=\dfrac{1}{2} \cdot (11-5 \cdot x)^{\frac{1}{2}-1} \cdot (11-5 \cdot x)'==\dfrac{1}{2} \cdot (11-5 \cdot x)^{-\frac{1}{2}} \cdot (-5)=-\dfrac{5}{2} \cdot (11-5 \cdot x)^{-\frac{1}{2}}\end{gathered}

y

=(

11−5⋅x

)

=((11−5⋅x)

2

1

)

=

2

1

⋅(11−5⋅x)

2

1

−1

⋅(11−5⋅x)

=

=

2

1

⋅(11−5⋅x)

2

1

⋅(−5)=−

2

5

⋅(11−5⋅x)

2

1

\displaystyle y'(-1)=-\dfrac{5}{2} \cdot (11-5 \cdot (-1))^{-\frac{1}{2}}=-\dfrac{5}{2} \cdot 16^{-\frac{1}{2}}=-\dfrac{5}{2} \cdot 4^{-1}= -\dfrac{5}{2} \cdot \frac{1}{4}=-\dfrac{5}{8}y

(−1)=−

2

5

⋅(11−5⋅(−1))

2

1

=−

2

5

⋅16

2

1

=−

2

5

⋅4

−1

=−

2

5

4

1

=−

8

5

3. Найдите производные функций:

a) y=(x-1)·(x²+x+1) = x³-1

=1·(x²+x+1)+(x-1)·(2·x+1)= x²+x+1+2·x²+x-2·x-1 =3·x²

б) \displaystyle y=\frac{x^{9}-3}{x^{3}}y=

x

3

x

9

−3

y

=(

x

3

x

9

−3

)

=

(x

3

)

2

(x

9

−3)

⋅x

3

−(x

3

)

⋅(x

9

−3)

=

=

x

6

(9⋅x

8

−0)⋅x

3

−(3⋅x

2

)⋅(x

9

−3)

=

x

6

9⋅x

8

⋅x

3

−3⋅x

2

⋅(x

9

−3)

=

=

x

6

9⋅x

11

−3⋅x

11

+9⋅x

2

=

x

6

6⋅x

11

+9⋅x

2

=

x

4

6⋅x

9

+9

\begin{gathered}\displaystyle y'=(\dfrac{x^{9}-3}{x^{3}})'=(x^{6}-\dfrac{3}{x^{3}})'=(x^{6}-3 \cdot x^{-3})'=(x^{6})'-3 \cdot (x^{-3})'== 6 \cdot x^{5}-3 \cdot (-3) \cdot x^{-4}=6 \cdot x^{5}+9\cdot x^{-4}=\dfrac{6 \cdot x^{9}+9}{x^{4}}\end{gathered}

y

=(

x

3

x

9

−3

)

=(x

6

x

3

3

)

=(x

6

−3⋅x

−3

)

=(x

6

)

−3⋅(x

−3

)

=

=6⋅x

5

−3⋅(−3)⋅x

−4

=6⋅x

5

+9⋅x

−4

=

x

4

6⋅x

9

+9

если правельно то прости пд

Есартия52

одз:

x^2-2x-8> 0\\ \\ \sqrt{d}=\sqrt{4+8*4}=\sqrt{36}=6\\ \\ x_1=\frac{2-6}{2}=-2\\ \\ x_2=\frac{2+6}{2}=4\\ \\ \left \{ {{x< -2} \atop {x> 4}} \right.

log_\frac{1}{3} (x^2-2x-8)+3> 0\\ \\ -log_3(x^2-2x-8)+log_327> 0\\ \\ log_3(x^2-2x-8)< log_327\\ \\ x^2-2x-8< 27\\ \\ x^2-2x-35< 0\\ \\ \sqrt{d}=\sqrt{4+4\cdot35}=\sqrt{4(1+35)}=\sqrt{4\cdot36}=2\cdot6=12 \\ \\ x_1=\frac{2-12}{2}=-5 \\ \\x_2=\frac{2+12}{2}=7\\ \\-5< x< 7

объединяем одз и решение неравенства, получаем

x ∈ (-5; -2) ∪ (4; 7)

ответ: (-5; -2) ∪ (4; 7)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Хитрости делящиеся на 11 удобным способом
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

EVLAMPIN56
bhg50
Александровна
Bogataya Vladimir318
sanina611
larson96
igortychinin
denspiel
Dmitrievich-Telishev
khar4550
evlampin
Ka-shop2791
Салиев
Zebra198383
warlordkolomna