а=5-2в-3с
в=(5-а-3с)/2
с=(5-а-2в)/3
Задание 1
\displaystyle \left \{ {{y=4-x} \atop {x^{2} +3xy=18}} \right. \\ \\
Значение у из первого уравнения подставим во второе уравнение
\displaystyle x^{2} +3x(4-x)= 18\\ \\ x^{2} +12x-3x^{2} =18\\ \\ -2x^{2} +12x-18=0 | : (-2)\\ \\ x^{2} -6x+9=0\\ \\ D= 6^{2}- 4*9= 36-36=0
Если дискриминант равен нулю , то квадратное уравнение имеет только один действительный корень, также можно сказать , что квадратное уравнение имеет два действительных корня , которые равны между собой.
x_{}= \frac{6+0}{2}= 3
y_{}= 4-3=1
Задание 2
\displaystyle \left \{ {{x^{3} - y^{3} =26} \atop {x^{2}+xy+y^{2} =13}} \right.
первое уравнение в системе это разность кубов, разложи на множители:
\displaystyle x^{3} - y^{3} = 26 \\ \\ (x-y)(x^{2} +xy+y^{2})= 26
из второго уравнения подставим значение выражения х²+ху+у²
\displaystyle 13*(x-y)= 26 \\ \\ x-y= 26 : 13\\ \\ x-y= 2 \\ \\ x= 2+y
подставим значение х во второе уравнение системы :
(2+y)^{2} +y(2+y)+y^{2} = 13\\ \\ 4+4y+y^{2} +2y+y^{2} +y^{2}= 13\\ \\ 3y^{2} +6y+4-13=0\\ \\ 3y^{2}+6y-9=0 | : 3\\ \\ y^{2}+2y-3=0\\ \\ D= 2^{2}- 4*(-3)= 4+12=16\\ \\ \sqrt{D}= 4\\ \\ y_{1}= \frac{-2+4}{2}= 1\\ \\ y_{2}= \frac{-2-4}{2} = -3
тогда
x_{1}= 2+1=3\\ \\ x_{2}= 2+(-3)= 2-3=-1
Корни уравнения ( 3 ;1) и ( -1 ; -3)
3/8
Объяснение:
Поскольку числитель на 5 меньше знаменателя, дробь имеет вид
x-5--. x
Если числитель этой дроби уменьшить на 2, а знаменатель увеличить на 16, то получится дробь
x-7--. x+16
Получаем уравнение
x-5 x-7 1 - - = - - + -. xx+16 3
Домножив обе части этого равенства на 3x (x+16) и преобразовав, получаем квадратное уравнение:
3 (x-5) (x+16) = 3 (x-7) x+x (x+16),
3 (x²+11x-90) = 3x²-21x+x²+16x,
x²-38x+240=0.
Дискриминант D=38²-4·240=484=22², корни x = (38±22) / 2=30 и 8. Этим корням соответствуют две дроби
25 3 - и -.30 8
Первая сократимая, вторая несократимая.
Поделитесь своими знаниями, ответьте на вопрос:
Выразить из равенства каждую переменную через другие : a+2b+3c=5
a=5-2b-3c
2b=5-a-3c, b=(5-a-3c)/2
3c=5-a-2b, c=(5-a-2b)/3