1) доказать:
а^2 - 3а > 5а - 20
доказательство:
оценим разность:
(а^2 - 3а) - (5а - 20) = а^2 - 3а - 5а + 20 = а^2 - 8а + 20 = а^2 - 8а + 16 + 4 = (а-4)^2 + 4.
так как (а-4)^2 ≥ 0 при всех действительных а, то (а-4)^2 + 4 ≥ 4, т.е.
(а^2 - 3а) - (5а - 20) > 0, по определению
а^2 - 3а > 5а - 20, ч.т.д.
2) доказать:
28а - 32 ≤ 7а^2 - 4
доказательство:
оценим разность:
(28а - 32) - (7а^2 - 4) = 28а - 32 - 7а^2 + 4 = -7а^2 + 28а - 28 = -7•(а^2 - 4а + 4) = -7•(а-2)^2.
так как (а-2)^2 ≥ 0 при всех действительных а, то
-7•(а-2)^2 ≤ 0 при всех действительных а.
получили, что
(28а - 32) - (7а^2 - 4) ≤ 0, тогда по определению
28а - 32 ≤ 7а^2 - 4, ч.т.д.
Поделитесь своими знаниями, ответьте на вопрос:
7класс, тема решение с уравнений. 90 , 2 варианта.
скорее всего это 4,3 млн