Логарифм единицы.loga1=0 логарифм единицы равен нулю ( а> 0, a≠1).примеры. вычислить: 1) log71=0, 2) lg1=0, 3) ln1=0,так как 70=1. так как 100=1. так как е0=1.4) 52log51=52∙0=50=1. 5) 43lg1=43∙0=40=1. 6) 85ln1=85∙0=80=1. e3+5lg1=e3+5∙0=e3. 106ln1-2=106∙0-2=10-2=0,01. 35lg1+4=35∙0+4=34=81.решить уравнение.1) log2(x+4)=log81; 2) log3(x-1)+5log181=log12(5∙0,2); log2(x+4)=0; log3(x-1)+5∙0=log121; x+4=20; log3(x-1)=0; x+4=1; x-1=30; x=1-4; x-1=1; x=-3. x=2.3) lg (2x+1) -7log21=ln1; lg (2x+1) -7∙0=0; lg (2x+1)=0; 2x+1=100; 2x+1=1; 2x=0; x=0. 11.4.4. натуральный логарифмлогарифм по основанию е (неперово число е≈2,7) называют натуральным логарифмом.ln7=loge7, ln7 – натуральный логарифм числа 7.примеры.вычислить, используя определение логарифма.1) lne². по определению натуральный логарифм числа e² — это показатель степени, в которую нужно возвести число е, чтобы получить число е². очевидно, что это число 2. lne²=2.2) ln (1/e). по определению натуральный логарифм числа 1/е — это показатель степени, в которую нужно возвести число е, чтобы получить 1/е. очевидно, что это число -1, так как е-1=1/е.ln (1/e)=-1.3) lne3+lne4=3+4=7.4) lne-ln (1/e2)=1- (-2)=1+2=3.вычислить, применив основное логарифмическое тождество: и формулу возведения степени в степень: (am)n=amn=(an)m .1) eln24=24.2) e2ln11=(eln11)2=112=121.3) e-ln20=(eln20)-1=20-1=1/20=0,05.4) (e4)ln5=(eln5)4=54=625., применив основное логарифмическое тождество: формулу возведения степени в степень: (am)n=amn=(an)m ; формулу произведения степеней с одинаковыми основаниями: am∙an=am+n и формулу возведения в степень произведения: (a∙b)n=an∙bn.1) eln4+2=eln4∙e2=4∙e2=4e2.2) e1+ln3=e1∙eln3=e∙3=3e.3) (e4+ln5)2=(e4∙eln5)2=(e4∙5)2=e4∙2∙52=e8∙25=25e8.4) (eln2+3)4=(eln2∙e3)4=(2∙e3)4=24∙e3∙4=16e12., применив основное логарифмическое тождество: формулу возведения степени в степень: (am)n=amn=(an)m ; формулу частного степеней с одинаковыми основаниями: am: an=am-n и формулу возведения в степень произведения: (a∙b)n=an∙bn.1) e2-ln3=e2: eln3=e2: 3=e2/3.2) e1-ln5=e1: eln5=e: 5=e/5=0,2e.3) (e5-ln10)3=(e5: eln10)3=(e5: 10)3=(0,1e5)3=0,13∙e5∙3=0,001e15.4) (e3-ln2)4=(e3: eln2)4=(e3: 2)4=(0,5e3)4=(0,5)4∙(e3)4=0,0625e12. 11.4.3. десятичный логарифмлогарифм по основанию 10 называют десятичным логарифмом и при написании опускают основание 10 и букву «о» в написании слова «log».lg7=log107, lg7 – десятичный логарифм числа 7.примеры. вычислить: lg10; lg100; lg1000; lg0,1; lg0,01; lg0,001.1) lg10=1, так как 101=10.2) lg100=2, так как102=100.3) lg1000=3, так как 103=1000.4) lg0,1=-1, так как 10-1=1/10=0,1.5) lg0,01=-2, так как 10-2=1/102=1/100=0,01.6) lg0,001=-3, так как 10-3=1/103=1/1000=0,001.найти значение выражения: 10lg8; 10lg4+10lg3,5; 105lg2; 100lg3; 10lg5+2; 10lg60-1.используем: основное логарифмическое тождество: (см. предыдущий урок 11.4.2. «примеры на основное логарифмическое тождество»здесь)формулу произведения степеней с одинаковыми основаниями: am∙an=am+n,формулу частного степеней с одинаковыми основаниями: am: an=am— n1) 10lg8=82) 10lg4+10lg3,5=4+3,5=7,5.3) 105lg2=(10lg2)5=25=32.4) 100lg3=(102)lg3=(10lg3)2=32=9.5) 10lg5+2=10lg5∙102=5∙100=500.6) 10lg60-1=10lg60: 101=60: 10=6.решить уравнение.1) lgx=10lg30-1. правую часть равенства как в предыдущих примерах.lgx=10lg30: 101; lgx=30: 10; lgx=3; x=103; x=1000.2) lg (x+3)=2.x+3=102; x+3=100; x=100-3; x=97.3) lg (x+5)=-1.x+5=10-1; x+5=0,1; x=0,1-5; x=-4,9. 11.4.2. примеры на основное логарифмическое тождество это основное логарифмическое тождество.это тождество следует из определения логарифма: так как логарифм – это показатель степени (n), то, возводя в эту степень число а, получим число b.примеры.вычислить: при решении используем формулу возведения степени в степень: (am)n=amn=(an)m и основное логарифмическое тождество.найти значение выражения: используем формулу произведения степеней с одинаковыми основаниями: am∙an=am+n и основное логарифмическое тождество.найти значение выражения: используем формулу частного степеней с одинаковыми основаниями: am: an=am— nи основное логарифмическое тождество. 11.4.1. определение логарифмалогарифмом числа b по основанию а (logab) называют показатель степени, в которую нужно возвести число а, чтобы получить число b.logab=n, если an=b. примеры: 1) log28=3, т. к. 23=8; 2) log5(1/25)=-2, т. к. 5-2=1/52=1/25; 3) log71=0, т. к. 70=1. вычислить: 1) log464+log525. используем значения степеней: 43=64, 52=25 и определение логарифма.log464+log525=3+2=5.2) log2log381. используем значения степеней: 34=81, 22=4 и определение логарифма.log2log381=log24=2.3) log5log9log2512. используем значения степеней: 29=512, 50=1 и определение логарифма.log5log9log2512=log5log99=log51=0.решить уравнение.1) log7x=2. по определению логарифма составим равенство: x=72, отсюда х=49.2) log3(x-5)=2.по определению логарифма: х-5=32; х-5=9; х=9+5; х=14.3) |log6(x+4)|=2.освободимся от знака модуля.или log6(x+4) =2; x+4=62; x+4=36; x=36-4; x=32.
anna-leonova
21.01.2022
Решение n^2-n=n(n-1) - произведение двух последовательных чисел, одно их которых точно четноеа произведение четного числа на любое - число четное.