Уваси в кошельке лежало немного денег. вася положили в кошелек еще 49 рублей и сумма денег в кошельке увеличилась в 99 раз. сколько денег стало у васи в кошельке?
Напишем уравнение касательной к кривой у=8(√х)-7. уравнение касательной в точке (х₀; у₀) имеет вид у=f(x₀)+f`(x₀)(x-x₀) f(x₀)= 8(√х₀)-7 f`(x)=8/(2√х)=4/√х f`(x₀)=4/√х₀ y=8(√х₀)-7+(4/√х₀)·(x-x₀) так как касательная проходит через точку (1; 3), подставим координаты этой точки в уравнение касательной, чтобы найти х₀. 3=8(√х₀)-7+(4/√х₀)·(1-x₀); 3(√х₀)= 8х₀-7(√х₀)+4·(1-x₀); 10(√х₀)= 4х₀+4. возводим в квадрат 100х₀=16х₀²+32х₀+16; 16х₀²-68х₀+16=0 8х₀²-34х₀+8=0 d=(-34)²-4·8·8=1156-256=900 x₀=(34-30)/16=1/4 или х₀=(34+30)/16=4 при х₀=1/4 получаем уравнение касательной y=8(√1/4)-7+(4/√1/4)·(x-(1/4)) у=4-7+8(х-(1/4)) у=-3+8х-2 у=8х-5 при х₀=4 получаем уравнение касательной y=8(√4)-7+(4/√4)·(x-4) у=16-7+2(х-4) у=9+2х-8 у=2х+1 находим сколько точек каждая прямая имеет с графиком y=x²+4x-1 8х-5=х²+4х-1 х²-4х+4=0 d=0 уравнение имеет один корень, поэтому прямая у=8х-5 не удовлетворяет условию . 2х+1=х²+4х-1 х²+2х-2=0 d=4-4·(-2)=4+8=12 > 0 уравнение имеет два корня, значит прямая и парабола пересекаются в двух точках. о т в е т. у=2х+1
Orestov563
10.08.2020
Уравнение любой прямой имеет вид: у=kх+b . если точка а(2; 3) лежит на прямой, то её координаты удовлетворяют уравнению этой прямой. то есть при подстановке в уравнение вместо х числа 2, а вместо у числа 3 , должны получить верное равенство : 3=k·2+b ⇒ 3=2k+b ещё известно, что прямая, которой принадлежит точка а(2; 3) , парал- лельна прямой у=1,5-х-3, то есть у=-х-1,5 . значит должны быть равны их угловые коэффициенты. угловой коэффициент второй прямой - это коэффициент перед х . он равен к=-1. заменим к на (-1) в нашем уравнении прямой : 3=2·(-1)+b ⇒ 3=-2+b ⇒ b=5 ⇒ теперь извеcтны к и b . можем окончательно написать уравнение искомой прямой: у= -х+5 . прямую всегда строят по двум точкам. найдём 2 точки, принадлежащие графику искомой прямой: а(2; 3) - уже известная точка и в(0; 5) . осталось на чертеже эти точки соединить прямой линией .