Решение: обозначим скорость течения реки за (х) км/час, тогда скорость теплохода по течению реки составляет: (15+х) км/час; а скорость теплохода против течения реки составляет: (15-х)км/час время в пути теплохода по течению реки в пункт назначения составляет: 221/(15+х) час время в пути против течения (возвращение домой) составляет: 221/(15-х) час общее время в пути с учётом стоянки составило 37 часов и это можно выразить уравнением: 221/(15+х)+221/(15-х)+7=37 221/(15+х)+221/(15-х)+7-37=0 221/(15+х)+221/(15-х)-30=0 (15-х)*221+(15+х)*221-(15+х)*(15-х)*30 3315-221х+3315+221х-6750+30х^2=0 30x^2-120=0 30x^2=120 x^2=120/30 x^2=4 x1^2=+-√4 x1=2 x2=-2 - не соответствует условию ответ: скорость течения реки равна 2 км/час
ksenia15-79
23.06.2022
Подкоренное выражение корня чётной степени должно быть ≥ 0, но если корень находится в знаменателе, то подкоренное выражение должно быть строго > 0 , так как знаменатель не должен равняться нулю. значит 1) 2x + 4 ≥ 0 2) x² - 4 > 0 2x ≥ - 4 (x - 2)(x + 2) > 0 x ≥ -2 + - + ₀₀ - 2 2 //////////////////////////////////// ответ: область определения все x ∈ (2 ,+ ∞)