б)a(n)=3n+9
a(1)=12
a(30)=99
S=(a(1)+a(30))/2*n=(12+99)/2*30=1665
Объяснение:
а)существует несколько решения этой задачи. Я предлагаю следующий. Рассмотрю весь набор не пусть чётных двузначных чисел как арифметическую прогрессию. Пусть (a)n - арифметическая прогрессия. Тогда a(1) = 11, a(2) = 13, d = a(2) - a(1) = 2.
Задача тогда сводится к тому. чтобы найти сумму n-первых членов данной арифметической прогрессии.
Всего двузначных нечётных чисел у нас 45. значит надо найти сумму 45 членов этой прогресии.
S(45) =(( 2a(1) + 44d)/2) * 45 =( 2*11+ 88)/2) * 45 = 2475. Вот мы и нашли сумму всех нечётных двузначных чисел.
Объяснение:
Квадратные уравнения все можно решить с дискриминанта.
D = b^2 - 4ac
x1 = -b + sqrt(D) / 2a
x2 = -b - sqrt(D) / 2a
1. x^2 + 5x + 6
D = 25 - 24 = 1
x1 = -5 + 1 / 2 = -2
x2 = -5 - 1 / 2 = -3
2. 2x^2 - x + 3 = 0
D = 1 - 104 = -103
Отрицательный дискриминант значит что корень уравнения невычислим.
3. x^2 - 6x + 7 = 0
D = 36 - 49 = - 13.
Отрицательный дискриминант значит что корень уравнения невычислим. Проверь, там случайно не x^2 - 6x -- 7 = 0?
4. 7x = 2 - 5x
7x + 5x = 2
12x = 2
x = 2/12 = 1/6
Тут точно нет квадрата?
5. 5x^2 + 8x - 4 = 0
D = 64 + 80 = 144
x1 = -8 + 12 / 10 = 4/10 = 0,4
x2 = -8 - 12 / 10 = -2
6. 10x^2 - 3x - 0,4 = 0
D = 9 + 16 = 25
x1 = 3 + 5 / 20 = 8/20 = 0,4
x2 = 3 - 5 / 20 = -2/20 = -0,1
7. x^2 + 12 = -7x
x^2 + 7x + 12 = 0
D = 49 - 48 = 1
x1 = -7 + 1 / 2 = -3
x2 = -7 - 1 / 2 = -4
8. 9x^2 = 6x - 1
9x^2 - 6x + 1 = 0
D = 36 - 36 = 0
Дискриминант равен нулю, значит ответ только один.
x1,2 = 6 / 18 = 1/3
Поделитесь своими знаниями, ответьте на вопрос:
Докажите . что при всех допустимых значениях переменной значение выражения (10/25-b^4)+(1/5+/5-b^2) положительно