Сергей_Крутикова114
?>

Решить, используя преобразование выделение полного квадрата двучлена х^2+12+32=0

Алгебра

Ответы

ludakamasana

2sin2x + 3sinxcosx - 3cos2x = 1;

Представим 1 в виде суммы по основному тригонометрическому тождеству:

sin2x + 3cosxsinx - 3cos2x = sin2x + cos2x;

Приведем подобные:

sin2x + 3cosxsinx - 4cos2x = 0;

Разделим каждый член уравнения на cos2x:

tg2x + 3tgx - 4 = 0;

Произведем замену и решим квадратное уравнение:

t2 + 3t - 4 = 0;

D = 9 + 16 = 25;

t = (-3 +- 5)/2;

t1 = -4, t2 = 1;

Сделаем обратную замену:

tgx = 1; x = pi/4 + pin, n из Z;

tgx = -4; x = arctg(-4) pin, n из Z.

ответ: pi/4 + pin, n из Z; arctg(-4) pin, n из Z.

Объяснение:

Оцени!

msburmis

Объяснение:

ДУМАЕМ Площадь фигуры - интеграл разности функций.

Рисунок к задаче в приложении.

РЕШЕНИЕ

1) Находим точки пересечение = пределы интегрирования.

x² - 4*x + 1 = x + 1 превращается в квадратное уравнение:

x²- 5*x = x*(x - 5) = 0

b= 0 - нижний предел и а = 5 - верхний передел интегрирования.

Находим интеграл разности функций:  s = 5*x - x² - прямая выше параболы.

S=

Мне нравится именно такая запись решения интеграла - увеличиваем степень и на неё же и делим.

Вычисляем на границах интегрирования.

S(5) = 62 1/2  - 41 2/3 = 20 5/6,   S(0) = 0.

S =  S(5) - S(0) = 20 5/6 - площадь фигуры - ОТВЕТ (≈ 20,833)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решить, используя преобразование выделение полного квадрата двучлена х^2+12+32=0
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

sv455umarketing74
msk27
dokmak140652
ale-protasov
bikemaster
Kolosove5465
Dmitriy793
skvorec3424
dimon198808744
andrew55588201824
gsktae7
Staroverovanatasa494
eleniloy26
yliana
evolkova-73