№ 2:
при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а> 4 - 2 корня (от исходной параболы)
ответ: 4
1) пусть первое слагаемое x, тогда второе 9-x, следовательно необходимо найти максимум ф-ии, f(x) = 9x - x^2 на области определения [0,9], легко определить что экстремумом данной ф-ии будет 4.5, т.е первое число 4,5 и второе 4,5
ответ 4,5 и 4,5
2) действуем аналогично, x и 12 - x, необходимо найти экстремум ф-ии f(x) = x^2 + (12-x)^2 = x^2 + 144 - 24x + x^2 = 2x^2-24x +144 на области определения [0, 12], экстремум будет там где производная принимает значение 0, т.е. f`(x) = 4x - 24 = 0, т.е. в точке x = 6
ответ 6, 6
Поделитесь своими знаниями, ответьте на вопрос:
Решите неравенства: cos х/2 больше чем 1/2