Пусть a см - длина одной из сторон прямоугольника. Тогда длина второй его стороны равна b = (a + 3) см.
Площадь прямоугольника может быть найдена по формуле:
S = a * (a + 3);
S = a^2 + 3 * a.
Подставим известные значения и решим получившееся уравнение:
54 = a^2 + 3 * a;
a^2 + 3 * a - 54 = 0;
D = 3^2 - 4 * 1 * (-54) = 9 + 216 = 225;
a1 = (-3 + 15) / (2 * 1) = 12 / 2 = 6;
a2 = (-3 - 15) / (2 * 1) = -18 / 2 = -9.
Так как длина стороны прямоугольника не может быть отрицательной, то корень a2 = -9 не является решением задачи. Таким образом, одна из сторон прямоугольника равна a = 6 см. Тогда вторая его сторона равна b = 6 + 3 = 9 см.
Периметр прямоугольника найдём по формуле:
P = 2 * (a + b);
P = 2 * (6 + 9) = 30 см.
ответ: a = 6 см; b = 9 см; P = 30 см.
Объяснение:
В решении.
Объяснение:
Сопоставь уравнение функции с рисунком, на котором изображен график этой функции. Количество соединений: 4.
1) у = (х + 2)² - 1;
Сдвиг функции у = х² влево по оси Ох на 2 единицы, вниз по оси Оу на 1 единицу. Четвёртый график;
2) у = (х - 2)² + 1;
Сдвиг функции у = х² вправо по оси Ох на 2 единицы, вверх по оси Оу на 1 единицу. Первый график;
3) у = (х + 2)² + 1;
Сдвиг функции у = х² влево по оси Ох на 2 единицы, вверх по оси Оу на 1 единицу. Второй график;
4) у = (х - 2)² - 1;
Сдвиг функции у = х² вправо по оси Ох на 2 единицы, вниз по оси Оу на 1 единицу. Третий график;
Поделитесь своими знаниями, ответьте на вопрос:
Решите логарифмические уравнения: 1. log (32-2x^2) по основанию 3 - log (6-x) по основанию 3 = log (x+5) по основанию 3 2. lg (8-x) = lg (32-4x) - lg (x+4)