Чтобы решить данное уравнение выделим полные квадраты, используя формулы сокращённого умножения
(a + b)² = a² + 2ab + b², (a - b)² = a² - 2ab + b².
x² - 8x + y² + 12y + 52 = 0,
х² - 2 · 4 · х + 4² - 4² + у² - 2 · у · 6 + 6² - 6² + 52 = 0,
(x - 4)² - 16 + (y + 6)² - 36 + 52 = 0,
(x - 4)² + (y + 6)² = 0.
Т.к. левая часть принимает только неотрицательные значения при любых значениях переменных х и у, то сумма двух неотрицательных выражений равна 0 только тогда, когда каждое из слагаемых будет равно 0, т.е. при x - 4 = 0 и y + 6 = 0, откуда x = 4, y = -6.
ответ: (4; - 6) или x = 4, y = -6.
Поделитесь своими знаниями, ответьте на вопрос:
36 в степени логарифм 6 (3 - корень из 3) + 81 в степени логарифм 9 (корень из 3 +3
Задать вопрос
Войти
АнонимМатематика09 ноября 14:55
Решите систему уравнений методом алгебраического сложения 2x^2+3y^2=14. -x^2+2y^2=7
ответ или решение1
Харитонова Светлана
Решим заданную систему уравнений методом алгебраического сложения:
2х^2 + 3у^2 = 14;
-х^2 + 2у^2 = 7.
1. Умножим второе уравнение на 2:
2х^2 + 3у^2 = 14;
-2х^2 + 4у^2 = 14.
2. Выполним прибавление первого и второго уравнения:
2х^2 - 2х^2 + 3у^2 + 4у^2 = 14 + 14;
7у^2 = 28;
у^2 = 28 : 7;
у^2 = 4;
у1 = 2;
у2 = -2.
3. Подставим значение у в первое уравнение и найдем значение х:
2х^2 + 3 * 2^2 = 14;
2х^2 + 3 * 4 = 14;
2х^2 + 12 = 14;
2х^2 = 14 - 12;
2х^2 = 2;
х^2 = 2 : 2;
х^2 = 1;
х1 = 1;
х2 = -1.
2х^2 + 3 * (-2)^2 = 14;
2х^2 = 14 - 12;
2х^2 = 2;
х^2 = 1;
х1 = 1;
х2 = -1.