В решении.
Объяснение:
не выполняя построения, определи, проходит ли график функции y=20x-40 через данные точки
A(1:-20)
B(0;-40)
C(5;60)
D(-5;-140)
E(-2;0)
F(4;40)
G(2;80)
H(10;240)
I(3;20)
K(-7;-100);
Нужно поочерёдно подставить известные значения х и у (координаты точки) в уравнение. Если левая часть равна правой, то проходит, и наоборот.
1) y=20x-40; A(1:-20);
-20 = 20*1 - 40
-20 = -20, проходит;
2) y=20x-40; B(0;-40);
-40 = 0 - 40
-40 = -40, проходит;
3) y=20x-40; C(5;60);
60 = 20*5 - 60
60 ≠ 40, не проходит;
4) y=20x-40; D(-5;-140)
-140 = 20*(-5) - 40
-140 = -140, проходит;
5) y=20x-40; E(-2;0);
0 = 20*(-2) - 40
0 ≠ -80, не проходит;
6) y=20x-40; F(4;40);
40 = 20*4 - 40
40 = 40, проходит;
7) y=20x-40; G(2;80);
80 = 20*2 - 40
80 ≠ 0, не проходит;
8) y=20x-40; H(10;240);
240 = 20*10 - 40
240 ≠ 160, не проходит;
9) y=20x-40; I(3;20);
20 = 20*3 - 40
20 = 20, проходит;
10) y=20x-40; K(-7;-100);
-100 = 20*(-7) - 40
-100 ≠ -180, не проходит.
Объяснение:
значения обратных тригонометрических функций можно определить из таблицы значений тригонометрических функций с учетом области значений арккосинуса. по косинусу находим угол
например arccos 0 это угол cos которого =0 из области значений [0;п] это угол п/2 ⇒ arccos0=п/2 и так далее
таблицы значений тригонометрических функций есть в сети и учебниках
а)
область значений arccos(x)=[0;п]
arccos0+2arccos(-1/2)+arccos(√2)/2= (п/2) + (2п/3)+(п/4)=17п/12
б)
область значений arcsin(x)=[-п/2;п/2]
arcsin(-1/√2)+arcsin1-arcsin(√3)/2=(-п/4)+(п/2)-(п/3)=-п/12
Поделитесь своими знаниями, ответьте на вопрос: