fedoseevgleb
?>

Вычислите сумму 4 членов если a2=2, d=5

Алгебра

Ответы

paninsv
Числа от 1 до 4=-3+2+7+12=18
ответ: сумма равна 18
kseniay2006548
1)  Оценим сумму , для этого примем что есть равные числа. Так как есть место для чисел 3 4 и 6 это  3 числа. 
 \frac{16*1+15x}{31} 
 x \in (-\infty;\frac{46}{15})\\
\frac{46}{15} то есть  да может , так как \frac{46}{15} ее целая часть равна 3 , а она натуральное число , и найдется набор таких чисел что среднее арифметическое будет меньше 2 , так как в условий не сказано что , сам набор может состоят так только из разных натуральных чисел.  
2)\frac{15+16x}{31} ,  целая часть этого числа равна 2 , то есть не может , так как в сумме 2=1+1 , и по количеству в этом наборе минимальное есть 16 единиц .  
3) 3+4+6=13\\
 так как мы ранее доказали что , есть не менее 16 единиц , и того 13+16=3932 что удовлетворяет условию .  
Баринова
Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.]
Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см.
Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.

\displaystyle z_1 = (x_1, \ y_1), \ z_2 = (x_2, \ y_2)\\\\
d(z_1, z_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\\\\
0 \leq x_1 \leq 1, \ 0 \leq x_2 \leq 1, \ 0 \leq y_1 \leq 1, \ 0 \leq y_2 \leq 1\\\\ - 1 \leq x_1 - x_2 \leq 1, \ - 1 \leq y_1 - y_2 \leq 1\\\\
0 \leq (x_1 - x_2)^2 \leq 1, \ 0 \leq (y_1 - y_2)^2 \leq 1\\\\
0 \leq (x_1 - x_2)^2 + (y_1 - y_2)^2 \leq 1 + 1 = 2\\\\
0 \leq \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \leq \sqrt{2}

Что и требовалось доказать.
Решите в квадрате со стороной 5 см расположено 26 точек. докажите, что среди них существуют две точк

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вычислите сумму 4 членов если a2=2, d=5
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Mikhail1369
muraveiynik
sabinina0578
Https://skr.sh/s5nkakbPhdA
Ольга тимур
Igorevich1512
uchpaot
juliat200520
marketing6
АльбертовичБерезин58
Likhomanova63
om805633748
Maloletkina-marina2
zsa100
Сороченкова-Александр
shmanm26