Пирамида SABCD, ABCD - квадрат в основании, SH - высота, H - точка пересечения диагоналей квадрата. SH1 - высота треугольника SDC. H1 соединим s H. SH1 перпендикулярен DC, HH1 так же перпендикулярен DC, значит <SH1H - линейный угол двугранного угла SDCH, следовательно <SH1H = 60°.
SH перпендикулярен HH1, так как перпендикулярен плоскости основания, следовательно и любой линии, лежащей в этой плоскости. Из прямоугольного треугольника SHH1:
sin<HH1S = SH/SH1
SH1*sin60° = 4√3
SH1*√3/2 = 4√3
SH1 = 8
По теореме пифагора: HH1² = SH1² - SH²
HH1² = 64 - 48 = 16
HH1 = 4
Рассмотрим треугольники CHH1 и CAD. Они подобны (один угол общих, два остальных - соответственные углы при пересечении двух параллельных прямых третьей).
2HC = AC (диагонали квадрата точкой пересечения делятся на две равные части)
Значит: AC/HC = AD/HH1
2HC/HC = AD/HH1
AD = 2HH1
AD = 2*4 = 8
Sбок = Pосн*h, где h - апофема
Sбок = Pосн*SH1 = (4*8)*8 = 256
Sосн = AD² = 8² = 64
Sполн = Sбок + Sосн = 256 + 64 = 320
ответ: 320
Поделитесь своими знаниями, ответьте на вопрос:
Разность катетов прямоугольного треугольника равна 23 см, а его гипотенуза равна 37 см. найдите периметр треугольника
х² + (х + 23)² = 37²
х² + х² + 46х +529 = 1369
2х² + 46х + 529 - 1369 = 0
2х² + 46х - 840 = 0
х² + 23х - 420 = 0
D = 23² - 4 · 1 · (-420) = 529 + 1680 = 2209 = 47²
х₁ = (-23 + 47) : 2 = 12 (см) - один катет.
х₂ = (-23 - 47) : 2 = -35 - не является решением.
12 + 23 = 35 (см) - второй катет.
Р = 12 + 35 + 37 = 84 (см) - периметр треугольника.
ответ: 84 см.