Объяснение:
Постройте график функции y=3-2х
Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно: 0; 1; -1.
2) значение аргумента, при котором значение функции равно 0.
3) несколько значений аргумента, при которых функция принимает положительные значения.
4)несколько значений аргумента, при которых функция принимает отрицательные значения.
y=3-2х
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у 5 3 1
1)Согласно графика при х=0 у=3
при х= 1 у= 1
при х= -1 у= 5
2)Согласно графика у=0 при х= 1,5
3)Согласно графика у>0 при х∈( -∞; 1,5), положительные значения
у принимает при х от 1,5 до - бесконечности, например, 0, -5, -10.
4)Согласно графика у<0 при х∈(1,5; ∞), отрицательные значения у принимает при х от 1,5 до + бесконечности, например, 2, 7, 25.
y=11+6√x-2x√x D(f)=x∈(0:+∞)
2x√x=2*x¹*x¹/₂=2*x³/²
6√x=6*x¹/²
f(x)=-2*x³/²+6*x¹/²+11
(2*x³/²)`=3*x¹/²=3√x
(6*x¹/²)`=3/x¹/²=3/√x
(11)`=0
f`(x)=-3√x+3/√x
Приравниваем производную к нулю:
-3√x+3/√x=0
-3√x*√х+3=0
-3х+3=0
-3х=-3
х=1 - критическая точка.
Чтобы узнать, достигает ли функция максимума в точке экстремума х=1, нужно определить знаки производной методом интервалов (рисунок во вложении):
f`(1)=0
f`(0.25)=-3√0.25+3/√0.25=4.5>0 - функция возрастает на отрезке (0;1)
f`(4)=-3√4+3/√4=-4.5<0 - функция убывает на отрезке (1;+∞)
При переходе через точку х=1 производная меняет знак с "+" на "-", значит х=1 - точка максимума функции.
Поделитесь своими знаниями, ответьте на вопрос:
-3x<-7 1/3
x>22/9
x>2 4/9
x=3
2)(x+1)/(3-4x)<-7
x+1<-21+28x
28x-x>1+21
27x>22
x>22/27
x=1