В решении.
Объяснение:
Представьте в виде многочлена выражение:
(0,8a + 0,9b)(0,8a - 0,9b) = 0,64a² - 0,81b².
Представьте в виде многочлена выражение:
(8x⁴+9y)(8x⁴−9y) = 64х⁸ - 81у².
Разложите на множители:
0,01m⁶−2,56n⁶ = (0,1m³ - 1,6n³)(0,1m³ + 1,6n³).
Разложите на два множителя:
36x²−1,21y² = (6х - 1,1у)(6х + 1,1у).
Представьте в виде многочлена выражение:
(0,4a+3b)(0,4a−3b) = 0,16a² - 9b².
Выполните умножение многочленов:
(2a²+0,1)(2a²−0,1) = 4a⁴ - 0,01.
Разложите на два множителя:
49m²−289n² = (7m - 17n)(7m + 17n).
Разложите на множители:
a⁴−0,16b⁴ = (a² - 0,4b²)(a² + 0,4b²).
Выполните умножение многочленов:
(0,3x+6)(0,3x−6) = 0,09x² - 36.
Разложите на множители:
0,49m⁶−225n⁶ = (0,7m³ - 15n³)(0,7m³ + 15n³).
Разложите на два множителя:
0,09x²−1,96y² = (0,3x - 1,4y)(0,3x + 1,4y).
Представьте в виде многочлена выражение:
(7x⁴+0,8y³)(7x⁴−0,8y³) = 49x⁸ - 0,64y⁶.
Выполните возведение в квадрат:
(1,6+0,5a)² = 2,56 + 1,6a + 0,25a².
которая должна выражать дату (в каком-то неизвестном представлении).


;

– возможная добавочная единица, уходящая из первого
– возможная добавочная единица, уходящая из второго
– возможная добавочная единица,
;
и при
;
поскольку
так как с этой цифры начинается разностное число.
поскольку в первом разряде уже есть шестёрка и добавочная единица, получаемая из нулевого разряда.
.
.



может играть роль апреля.
;
;
;
;
;
;
– дата 12/04/56 г.
– дата 15/04/86 г.
– дата 21/04/47 г.
– дата 24/04/77 г.
– дата 24/04/38 г.
может играть только роль числа месяца (дня).
;
;
;
– дата 11/15/46 г.

Поделитесь своими знаниями, ответьте на вопрос:
7-3х<1 -3x<1-7 x>6/3>2
1.8-x<0 x>1.8
рисуем прямую отмечаем точки 1,8 и 2 точки не закрашенные (тк знаки строгие) получаем ответ от (2;+бесконечности)