byfetvostochniy
?>

Представьте выражение в виде степени с основанием x х^-7умножить х^19 и все это делить на (х^2)^3

Алгебра

Ответы

bulin2001
\frac{x^{-7}*x^{19}}{(x^2)^3}= \frac{x^{-7+19}}{x^6}= \frac{x^{12}}{x^6}=x^{12-6}=x^6
sdy19576216

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
banketvoshod

y = x² - 3x + 2

Если график пересекает ось абсцисс , то ордината точки пересечения равна нулю, то есть y = 0. Найдём абсциссу точки пересечения :

0 = x² - 3x + 2

x² - 3x + 2 = 0

(x - 2)(x - 1) = 0

или   x - 2 = 0   и тогда   x = 2

или   x - 1 = 0    и тогда   x = 1

Нашли две точки пересечения графика с осью OX, координаты которых :

(2 ; 0) , (1 ; 0)

Если график пересекает ось ординат , то абсцисса точки пересечения равна нулю, то есть x = 0. Найдём ординату точки пересечения :

y = 0² - 3 * 0 + 2 = 2

Координаты точки пересечения с осью OY : (0 ; 2)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Представьте выражение в виде степени с основанием x х^-7умножить х^19 и все это делить на (х^2)^3
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Кочугурова
Obukhov-Buriko
drozd228758
ea-office
Yevgenevich775
Olga1233
Boss5519
stasletter
Баранов276
muraveiynik
vladimir152
Negutsa_Kseniya524
kagurkina
mstapottery
chernovol1985255